Archives

Archives
Previous​ Next
  • Research ArticleJune 30, 2017

    2 191 1054
    Abstract

    Abstract : The soil organisms that develop beneficial Symbiotic relationships with plants roots and contribute to plant growth are mycorrhizal (AM) fungi. Arbuscular mycorrhizal inoculations change the growth and biochemical composition of the host plant and soil. Mycorrhizal root systems do augment the absorbing area of roots from 10 to 100 times thereby greatly improving the ability of the plants to utilize the soil resources. A pot experiment was conducted during the kharif seasons at Jaipur, Rajasthan, to find out the effects of three different indigenous AM fungi i.e. Glomus mosseae, Glomus fasciculatum and Gigaspora decipiens either single and in combination inoculation on biochemical and histochemical changes of Pearl millet (Pennisetum glaucum L.) grown under barren soil conditions. The AM fungus has shown to improve the tolerance of plant to drought stress. Experimental results showed that AM fungi treated plants improved their plants growths, biochemical and histochemical changes as compared to non-mycorrhizal treatments. The AM fungi inoculated plant was found to be attaining maximum plant biochemical and histochemical substances in Glomus mosseae (alone) and also Glomus mosseae + Glomus fasciculatum treatments.

  • Research ArticleJune 30, 2017

    43 767 3062

    Phytochemicals and antioxidant activity in the kenaf plant (Hibiscus cannabinus L.)

    Jaihyunk Ryu, Soon-Jae Kwon, Joon-Woo Ahn, Yeong Deuk Jo, Sang Hoon Kim, Sang Wook Jeong, Min Kyu Lee, Jin-Baek Kim, and Si-Yong Kang

    J Plant Biotechnol 2017; 44(2): 191-202

    https://doi.org/10.5010/JPB.2017.44.2.191

    Abstract

    Abstract : Chemical compounds from four different tissues of the kenaf plant (Hibiscus cannabinus), a valuable medicinal crop originating from Africa, were examined to determine its potential for use as a new drug material. Leaves, bark, flowers, and seeds were harvested to identify phytochemical compounds and measure antioxidant activities. Gas chromatography mass spectrometry analyses identified 22 different phytocompounds in hexane extracts of the different parts of the kenaf plant. The most abundant volatile compounds were E-phytol (32.4%), linolenic acid (47.3%), trisiloxane-1,1,1,5,5,5-hexamethyl- 3,3-bis[(trimethylsilyl)oxy] (16.4%), and linoleic acid (46.4%) in leaves, bark, flowers, and seeds, respectively. Ultra-high performance liquid chromatography identified the major compounds in the different parts of the kenaf plant as kaemperitrin, caffeic acid, myricetin glycoside, and p-hydroxybenzoic acid in leaves, bark, flowers, and seeds, respectively. Water extracts of flowers, leaves, and seeds exhibited the greatest DPPH radical scavenging activity and SOD activity. Our analyses suggest that water is the optimal solvent, as it extracted the greatest quantity of functional compounds with the highest levels of antioxidant activity. These results provide valuable information for the development of environmentally friendly natural products for the pharmaceutical industry.

  • Research ArticleJune 30, 2017

    10 282 1020

    Sugar content analysis and expression profiling of sugar related genes in contrasting Strawberry (Fragaria × ananassa) cultivars

    Ashokraj Shanmugam, Mohammad Rashed Hossain, Sathishkumar Natarajan, Hee-Jeong Jung, Jae-Young Song, Hoy-Taek Kim, and Ill-Sup Nou

    J Plant Biotechnol 2017; 44(2): 178-190

    https://doi.org/10.5010/JPB.2017.44.2.178

    Abstract

    Abstract : Fragaria × ananassa, a strawberry evolved from hybridization between F. virginiana and F. chiloensis, is a globally cultivated and consumed fruit crop valued for its flavor and nutritional value. Flavor and quality of fruits are determined by factors such as sugars and organic acids present during fruit development. These characteristics are highly subjective in different genotypes and affected by various environmental factors. In this study, we analyzed contents of major sugar compounds including fructose, glucose and sucrose by HPLC analysis in four cultivars namely, Maehyang, Seolhyang, Festival and Sweet Charlie. We identified 55 genes related to fructose, glucose, sucrose and soluble sugar regulation whose expression were analyzed in four cultivars at three developmental stages of the fruit namely, green, white and ripened stages. Expression of these genes across these progressive fruit developmental stages varied among cultivars. Among the 55 genes, genes FaFru3, FaSuc11 and FaGlu8 revealed differential patterns of expression along developmental stages of the fruit in high and low sugar-containing genotypes, respectively and may be putative candidates for sugar content in strawberries. Expression of genes are discussed with regard to corresponding sugar content in these genotypes. Further analysis and application of these genes may be valuable in developing high sugar containing cultivars via marker-assisted breeding.

  • Research ArticleJune 30, 2017

    0 205 915
    Abstract

    Abstract : A callus-mediated regeneration protocol for sea-milkwort, an endangered coastal plant species in South Korea, is reported here. The explants of in vitro-plantlets generated from a node culture revealed distinguishable responses in callus induction depending on genotype, explant source, light condition, and 2,4-D concentration. Especially, continuous darkness exclusively facilitated callus induction from explants prior to other treatments. The calli initiated on the media with 2,4-D ranging from 0.1 mg/L to 3.0 mg/L in the dark vigorously proliferated when sub- cultured on the same media in continuous darkness. Given 1.0 mg/L zeatin in addition to darkness to the calli of the ‘Pistachio’ genotype, normal adventitious shoots were only regenerated from nodular structures that formed earlier from the calli at the frequency of 24.4 percent. Regenerated shoots easily grew into plantlets with roots and green color on a phytohormone-free MS medium under lighted condition, that were used for node culture as plant materials. Node culture effectively multiplied plantlets in accordance with protocol by Bae et al. (2016). Acclimatized plantlet clusters developed mature plant clusters under inland environment, followed by flowering the following April. Results were merged with node culture protocol suggested by Bae et al. (2016), which, as an in vitro propagation system for sea-milkwort, may contribute to natural habitat restoration.

  • Research ArticleJune 30, 2017

    5 236 1535

    Development of an efficient protocol for high-frequency regeneration system in Hibiscus syriacus L.

    Sang-Gyu Seo, Sun-Hee Ryu, Yang Zhou, and Sun-Hyung Kim

    J Plant Biotechnol 2017; 44(2): 164-170

    https://doi.org/10.5010/JPB.2017.44.2.164

    Abstract

    Abstract : A rapid and efficient in vitro regeneration system was established for Hibiscus syriacus L. The successful regeneration protocol employs induction of shoot organogenesis on leaf, petiole, and root explants. Among the various plant growth regulators evaluated, thidiazuron (TDZ) was the most effective for inducing rapid shoot formation. Most efficient shoot regeneration frequency was obtained from Murashige and Skoog (MS) media containing 0.01 mg/L TDZ. Regeneration efficiency was highest in the roots, and lowest in the leaves. A combination of 0.01 mg/L TDZ with benzyladenine (BAP) markedly improved the frequency of shoot differentiation from the root (up to 98%) and petiole (up to 88%) explants. Furthermore, leaf and petiole explants showed the highest frequency of shoot induction in half-strength MS media containing 0.01 mg/L TDZ and 1.0 mg/L BAP, while root explants formed the greatest number of shoots when 0.01 mg/L TDZ and 0.1 mg/L BAP were added to half-strength MS media. Although the frequency of shoot differentiation from leaf explants was only 50%, the leaf is considered the most efficient plant organ for use in tissue culture because leaves are easier to obtain than roots and petioles. Our findings show that various organs of H. syriacus can be used for plant regeneration, and the protocol developed in this study may be applicable in the horticulture industry.

  • Research ArticleJune 30, 2017

    4 159 737
    Abstract

    Abstract : A greenhouse experiment was conducted for evaluation of ecological effects of transgenic melon plants in the rhizospheric soil in terms of soil properties, enzyme activities and microbial communities. Organic matter content of soil under transgenic melon plants was significantly higher than that of soil with non-transgenic melon plants. Significant variations were observed in organic matter, total P and K in soil cultivation with transgenic melon plants. There were also significant variations in the total numbers of colony forming units of fungi, actinomycetes and bacteria between soils treated with transgenic and non-transgenic melon plants. Transgenic and non-transgenic melon significantly enhanced several enzymes activities including urease, acid phosphatase, alkalin phosphatase, arysulphtase, β glucosidase, dehydrogenase, protease and catalase. Soil polyphenoloxidase activity of T1 transgenic melon was lower than that of T0 transgenic melon and a non-melon plant during the same period. The first generation transgenic melon plants (T0) showed significantly greater (p<0.05) effect on the activitiy of arylsulfatase, which increased from 2.540x106 CFU g-1 (control) to 19.860x106 CFU g-1 (T0). These results clearly indicated that transgenic melon might change microbial communities, enzyme activities and soil chemical properties.

  • Research ArticleJune 30, 2017

    12 349 1163

    Overexpression of rice NAC transcription factor OsNAC58 on increased resistance to bacterial leaf blight

    Sang Ryeol Park, Hye Seon Kim, Kyong Sil Lee, Duk-Ju Hwang, Shin-Chul Bae, Il-Pyung Ahn, Seo Hyun Lee, and Sun Tae Kim

    J Plant Biotechnol 2017; 44(2): 149-155

    https://doi.org/10.5010/JPB.2017.44.2.149

    Abstract

    Abstract : Bacterial blight in rice caused by Xanthomonas oryzae pv. oryzae (Xoo) greatly reduces the growth and productivity of this important food crop. Therefore, we sought to increase the resistance of rice to bacterial blight by using a NAC (NAM, ATAF, and CUC) transcription factor, one of the plant-specific transcription factors that is known to be involved in biotic/abiotic stress resistance. By isolating the OsNAC58 gene from rice and analyzing its biological functions related to Xoo resistance, phylogenetic analysis showed that OsNAC58 belongs to group III. To investigate the biological relationship between bacterial leaf blight (BLB) and OsNAC58 in rice, we constructed a vector for overexpression in rice and generated transgenic rice. The expression analysis resulting from use of RT-PCR showed that OsNAC58- overexpressed transgenic rice exhibited higher levels of OsNAC58 expression than wild types. Further, subcellular localization analysis using rice protoplasts showed that the 35S/OsNAC58-SmGFP fusion protein was localized in the nuclei. Thirteen OsNAC58-overexpressed transgenic rice lines, with high expression levels of OsNAC58, showed more resistant to Xoo than did the wild types. Together, these results suggest that the OsNAC58 gene of rice regulates the rice disease resistance mechanism in the nucleus upon invasion of the rice bacterial blight pathogen Xoo.

  • Research ArticleJune 30, 2017

    4 187 874

    Expression of NAC transcription factor is altered under intermittent drought stress and re-watered conditions in Hevea brasiliensis

    Lisha P. Luke, M.B. Mohamed Sathik, Molly Thomas, Linu Kuruvilla, and K.V. Sumesh

    J Plant Biotechnol 2017; 44(2): 142-148

    https://doi.org/10.5010/JPB.2017.44.2.142

    Abstract

    Abstract : Drought stress is one of the important factors that restrict the expansion of Hevea brasiliensis cultivation to non- traditional regions experiencing extreme weather conditions. Plants respond to drought stress by triggering expression of several drought responsive genes including transcription factors which in turn trigger expression of various downstream signalling pathways and adaptive networks. Expression of such drought responsive genes may revert back to their original level upon re-watering. However, no reports are available on such phenomenon in Hevea and hence, this study was initiated. For this purpose, NAC transcription factor (NAC tf) was chosen as candidate gene. Its expression levels were monitored under intermittent drought as well as irrigated conditions in two clones (RRII 105 and RRIM 600) of H. brasiliensis with contrasting tolerance level. Copy number of NAC tf was found similar in both the clones. Expression of NAC tf was found highly up-regulated in RRIM 600 (a relatively drought tolerant clone) than in RRII 105 (a relatively drought susceptible clone) throughout the drought incidences which upon re-watering, reached back to its original levels in both the clones. The study indicated the existence of an association between expression of NAC tf and drought tolerance trait exhibited by the tolerant clone RRIM 600. The study also proves the influence of drought and re-watering on the leaf photosynthesis and expression of NAC tf in H. brasiliensis.

  • Research ArticleJune 30, 2017

    3 217 992
    Abstract

    Abstract : Cudrania tricuspidata Bureau is a widely used medicinal perennial woody plant. For conservation and germplasm utilization of the plant, it is imperative to obtaining information regarding the genetic diversity of the plant populations. Although C. tricuspidata is an important medicinal plant registered in South Korea, no molecular markers are currently available to distinguish Korean-specific ecotypes from other ecotypes of different countries. In this study, we developed single nucleotide polymorphism (SNP) markers derived from chloroplast genomic sequences to identify distinct Korean-specific ecotypes of C. tricuspidata via the amplification refractory mutation system (ARMS)-PCR analyses. Molecular authentication of twelve C. tricuspidata ecotypes from different regions was performed, using DNA sequences in the trnL-F chloroplast intergenic region. The SNP markers developed in this study are useful for rapidly identifying specific C. tricuspidata ecotypes from different regions.

  • Research ArticleJune 30, 2017

    5 189 805
    Abstract

    Abstract : Enhanced disease susceptibility1 (EDS1) is a regulator of basal defense responses required for resistance mediated by TIR-NBS-LRR containing R proteins. We identified three transcripts of EDS1-like genes encompassing diverse/ separate expression patterns, based on the transcriptome analysis by Next Generation Sequencing (NGS) of V. flexuosa inoculated with Elsinoe ampelina. These genes were designated VfEDL1 (Vitis flexuosa Enhanced Disease Susceptibility1-like1), VfEDL2 and VfEDL3, and contained 2464, 1719 and 1599 bp, with 1791, 1227 and 1599 bp open reading frames (ORFs), encoding proteins of 596, 408 and 532 amino acids, respectively. The predicted amino acid sequences of all three genes showed the L-family lipase-like domain (class 3 lipase domain), and exhibited a potential lipase catalytic triad, aspartic acid, histidine and serine in the conserved G-X-S-X-G. All three VfEDL genes were upregulated at 1 hpi against the bacterial and fungal pathogens Rizhobiumvitis and E. ampelina, respectively, except VfEDL1, which was downregulated against E. ampelina at all time points. Against E. ampelina, VfEDL2 and VfEDL3 showed downregulated expression at later time points. When evaluated against R. vitis, VfEDL1 showed downregulated expression at all time points after 1 hpi, while VfEDL3 showed upregulation up to 24 hpi. Based on the expression response, all three genes may be involved in plant resistant responses against R. vitis, and VfEDL2 and VfEDL3 show additional resistant responses against E. ampelina infection.

JPB
Vol 51. 2024

Archives

Journal of

Plant Biotechnology

pISSN 1229-2818
eISSN 2384-1397
qr-code Download