Minjeong Kwak · Seung Hee Eom · Jinsu Gil · Ju-Sung Kim · Tae Kyung Hyun
J Plant Biotechnol 2019; 46(3): 236-245Abstract : Fruit ripening is a genetically programmed process involving a number of biochemical and physiological processes assisted by variations in gene expression and enzyme activities. This process generally affects the phytochemical profile and the bioactive principles in fruits and vegetables. To appraise the variation in bioactive principles of fruits from
Young Hee Kwon · Joung Kwan Lee · Hee Kyu Kim· Kyung Ok Kim· Jae Seong Park · Yoon Sun Huh · Eui Kwang Park · Yeo Joong Yoon
J Plant Biotechnol 2019; 46(3): 228-235Abstract : Apple (
Won Seok Ju · Ilchan Song · Se-Ra Park · Sang Young Seo · Jin Hyoung Cho · Sung-Hun Min · Dae-Heon Kim· Ji-Su Kim· Sun-Uk Kim · Soon Ju Park · Kisung Ko · Young-Kug Choo
J Plant Biotechnol 2019; 46(3): 217-227Abstract : Production of therapeutic monoclonal antibodies (mAbs) using a plant platform has been considered an alternative to the mammalian cell-based production system. A plant-derived mAb CO17-1AK (mAbP COK) can specifically bind to various types of cancer cell lines. The target protein of mAbP COK is the epithelial cell adhesion molecule (EpCAM) highly expressed in human epithelial cancer cells, including breast and colorectal cancer cells. It has been hypothesized that its overexpression supports tumor growth and metastasis. A ganglioside is extended well beyond the surfaces of the various cell membranes and has roles in cell growth, inflammation, differentiation, and carcinogenesis. However, the regulation of EpCAM gene expression in breast cancers and the role of gangliosides in oncogenesis are unclear. Here, the purpose of this study was to determine the effects of mAbP COK on human breast cancer cell proliferation, apoptosis, and ganglioside expression patterns. Our results show that treatment with mAbP COK suppressed the growth of breast cancer cells and induced apoptotic cell death. It also upregulated the expression of metastasis-related gangliosides in breast cancer cells. Thus, treatment with mAbP COK may have chemo-preventive therapeutic effects against human breast cancer.
Byung Jun Jin · Hyun Jin Chun · Hyun Min Cho · Su Hyeon Lee · Cheol Woo Choi · Wook-Hun Jung · Dongwon Baek · Chang-deok Han · Min Chul Kim
J Plant Biotechnol 2019; 46(3): 205-216Abstract : Since the RNA interference (RNAi) had been discovered in many organisms, small non-coding RNA-mediated gene silencing technology, including RNAi have been widely applied to analysis of gene function, as well as crop improvement. Despite the usefulness of RNAi technology, RNAi transgenic crops have various potential environmental risks, including off-target and non-target effects. In this study, we developed methods that can be effectively applied to environmental risk assessment of RNAi transgenic crops and verified these methods in 35S::dsRNAi_
Jeongyeo Lee · Sung Ran Min · Jaeeun Jung · HyeRan Kim
J Plant Biotechnol 2019; 46(3): 189-204Abstract : In this study, we analyzed the changes in glucosinolate content and gene expression in TO1000DH3 and Early big seedling upon methyl jasmonate (MeJA) treatment. Analysis of glucosinolate contents after MeJA treatment at 200 μM concentration showed that the total glucosinolate content increased by 1.3-1.5 fold in TO1000DH3 and 1.3-3.8 fold in Early big compared to those before treatment. Aliphatic glucosinolates, progoitrin and gluconapin, were detected only in TO1000DH3, and the changes in the content of neoglucobrassicin were the greatest at 48 hours after MeJA treatment in TO1000DH3 and Early big. The transcriptomic analysis showed that transcripts involved in stress or defense reactions, or those related to growth were specifically expressed in TO1000DH3, while transcripts related to nucleosides or ATP biosynthesis were specifically expressed in Early big. GO analysis on transcripts with more than two-fold change in expression upon MeJA treatment, corresponding to 12,020 transcripts in TO1000DH3 and 13,510 transcripts in Early big, showed that the expression of transcripts that react to stimulus and chemical increased in TO1000DH3 and Early big, while those related to single-organism and ribosome synthesis decreased. In particular, the expression increased for all transcripts related to indole glucosinolate biosynthesis, which is associated with increase in glucobrassicin and neoglucobrassicin contents. Upon MeJA treatment, the expression of
Eun-Kyung Bae ·Young-Im Choi ·Hyoshin Lee ·Ji Won Choi
J Plant Biotechnol 2019; 46(3): 180-188Abstract : Auxin plays a crucial regulatory role in plant growth and development processes. Three major classes of auxin-responsive transcription factors controlled by the
Truong Thi Phuong Lan · Nguyen Duc Huy · Nguyen Ngoc Luong · Hoang Tan Quang · Trinh Huu Tan · Le Thi Anh Thu · Nguyen Xuan Huy · Nguyen Hoang Loc
J Plant Biotechnol 2019; 46(3): 172-179Abstract : The aim of this study is to evaluate the effect of yeast extract (YE) and salicylic acid (SA) on the expression of curcuminoid-biosynthesis genes (
Jong Hee Kim · Yu Jin Jung · Hoon Kyo Seo · Myong-Kwon Kim · Ill-Sup Nou · Kwon Kyoo Kang
J Plant Biotechnol 2019; 46(3): 165-171Abstract : Marker-assisted backcrossing (MABC) is useful for selecting an offspring with a highly recovered genetic background for a recurrent parent at early generation to various crops. Moreover, marker-assisted backcrossing (MABC) along with marker-assisted selection (MAS) contributes immensely to overcome the main limitation of the conventional breeding and it accelerates recurrent parent genome (RPG) recovery. In this study, we were employed to incorporate
Shipra Kumari · Young-Sun Kim · Bashistha Kumar Kanth · Ji-Young Jang · Geung-Joo Lee
J Plant Biotechnol 2019; 46(3): 158-164Abstract : Molecular characterization of different genotypes reveals accurate information about the degree of genetic diversity that helps to develop a proper breeding program. In this study, a total of 30 EST-based simple sequence repeat (EST-SSR) markers derived from trumpet lily (
Endang Rahmat· Youngmin Kang
J Plant Biotechnol 2019; 46(3): 143-157Abstract : Medicinal plants are high-value natural resources that have been used as precautionary drugs by many people globally. The increasing global demand for bioactive compounds from medicinal plants has led to the overexploitation of many valuable species. One widely used approach to overcome this problem is the use of adventitious root cultures as a propagation strategy. This review examines the scientific research published globally on the application of adventitious root cultures for many medicinal plants. Adventitious roots generated under aseptic environments in suitable phytohormone-augmented medium exhibit high growth rates and production of important secondary metabolites. Parameters such as medium properties and composition, growth hormone type, and elicitation strategies for in vitro grown adventitious roots of medicinal plants, are the main topics discussed in this review. We also examine current developments in bioreactor system cultivation for plant bioactive compounds using adventitious root cultures, a technology with possible commercial applications, via several studies on adventitious root culture of medicinal plants in which bioreactor systems play a role. In conclusion, the development of adventitious root cultures for medicinal plants is highly useful because of their capability for vegetative propagation and germplasm preservation.
Journal of
Plant BiotechnologyDevelopmental phases on the organogenesis of adventitious root formation. There are four steps of adventitious root formation and proliferation. First is the root pre-emergence stage which includes dedifferentiation (induction), formation of root initials (initiation), development of an organized root primordia, and emergence of root primordia (elongation). In this first process, some PGRs such as auxin, cytokinin, ABA, and ethylene play a critical role in the adventitious root formation. The subsequent process is the early phase of root formation, massive root growth, and final phase of root development
|@|~(^,^)~|@|Scale-up production strategy for adventitious root culture production using the bioreactor. Adventitious roots induced from explants in solid medium are subcultured into liquid medium on the flask until eventually transferred into the bioreactor system from small-scale to production-scale. Some parameters such as medium properties, PGRs, and elicitation must be evaluated in to achieve optimized condition for the culture. To enhance the yield production, some engineering parameters on the bioreactor should be optimized as well such as aeration, inoculum density, culture period, fluid mixing, shear sensitivity, etc.