Archives

Archives
Previous​ Next
  • Research ArticleDecember 31, 2017

    12 306 895
    Abstract

    Abstract : The amino acid composition of rice is a major concern of rice breeders because amino acids are among the most important nutrient components in rice. In this study, a genetic map was constructed with a population of 134 recombinant inbred lines (RILs) from a cross between Dasanbyeo (Tongil-type indica) and TR22183 (temperate japonica), as a means to detect the main and epistatic effect quantitative trait loci (QTLs) for the amino acid content (AAC). Using a linkage map which covered a total of 1458 cM based on 239 molecular marker loci, a total of six main-effect QTLs (M-QTLs) was identified for the content of six amino acids that were mapped onto chromosome 3. For all the M-QTLs, the TR22183 allele increased the trait values. The QTL cluster (flanked by id3015453 and id3016090) on chromosome 3 was associated with the content of five amino acids. The phenotypic variation, explained by the individual QTLs located in this cluster, ranged from 10.2 to 12.4%. In addition, 26 epistatic QTLs (Ep-QTLs) were detected and the 25 loci involved in this interaction were distributed on all nine chromosomes. Both the M-QTLs and Ep-QTLs detected in this study will be useful in breeding programs which target the development of rice with improved amino acid composition.

  • Research ArticleDecember 31, 2017

    1 439 1060

    Genotype analysis of genes involved in increasing grain number per panicle in rice germplasm

    Dongjin Shin, Tae-Heon Kim, Ji-Yoon Lee, Jun-Hyun Cho, Jong-Hee Lee, You-Chun Song, Dong-soo Park, and Myeong-Kyu Oh

    J Plant Biotechnol 2017; 44(4): 356-363

    https://doi.org/10.5010/JPB.2017.44.4.356

    Abstract

    Abstract : ARice is an important staple food in the world and rice yield is one of the main traits for rice breeding. Several genes involved in increasing the yield have been identified through map-based gene cloning within natural variations in rice. These identified genes are good targets for introducing a genetic trait in molecular breeding. Here, we chose five genes reported to be involved in increasing grain number per panicle in rice; Gn1a, dep1, Apo1, Ghd7, and Nal1. We developed In/Del markers for Gn1a, and dep1, Apo1, and applied the reported SNP markers for Ghd7 and Nal1. We were easily able to examine the genotype of each gene on agarose gel. We tested the genotypes on 479 rice resources that we held with evaluated molecular markers. According to the genotype of each gene, rice resources were divided into 13 haplotypes, and most of the Indica and Japonica varieties were included in haplotypes 1 and 13, respectively. When we examined the effect of each gene on grain number per panicle and panicle number per plant, panicle number per plant in the yield negative allele group for each gene was reduced by approximately 0.3 to 0.8 compared to that in the yield positive allele group. However, the number of yield positive alleles for each gene was higher by about 21 to 27 grains per panicle than that of yield negative alleles. Although most of the varieties were grouped in haplotypes 1 and 13, we believe that this genotype information with evaluated molecular markers will be useful in rice breeding for increasing the yield with grain number per panicle.

  • Research ArticleDecember 31, 2017

    5 686 1171

    Development of male sterile transgenic lines in rice by tapetum specific expression of barnase gene

    Pravin Kumar, Kulwinder Kaur, Ram Singh Purty, Madan Mohan, and Pradeep Kumar Burma

    J Plant Biotechnol 2017; 44(4): 364-371

    https://doi.org/10.5010/JPB.2017.44.4.364

    Abstract

    Abstract : The key to development of barnase-barstar transgene based hybrid seed technology is the availability of tightly regulated tapetum specific promoter, as any leaky expression of the barnase gene leads to several unintended effects. In the present study, we used two different tapetum specific promoters i.e. promoter of the RTS gene isolated from rice cultivar IR64 and the OsG6b promoter from japonica rice cultivar Hayayuki to express the barnase gene in rice transgenic lines. While viable male sterile transgenic lines could not be obtained with RTS promoter we could develop single copy male sterile lines when the barnase gene was expressed under the OsG6b promoter.

  • Research ArticleDecember 31, 2017

    1 491 1078

    Development of SNP markers for the identification of apple flesh color based on RNA-Seq data

    Se Hee Kim, Seo Jun Park, Kang Hee Cho, Han Chan Lee, Jung Woo Lee, and In Myung Choi

    J Plant Biotechnol 2017; 44(4): 372-378

    https://doi.org/10.5010/JPB.2017.44.4.372

    Abstract

    Abstract : For comparison of the transcription profiles in apple (Malus domestica L.) cultivars differing in flesh color expression, two cDNA libraries were constructed. Differences in gene expression between red flesh apple cultivar, ‘Redfield’ and white flesh apple cultivar, ‘Granny Smith’ were investigated by next-generation sequencing (NGS). Expressed sequence tag (EST) of clones from the red flesh apple cultivar and white flesh apple cultivar were selected for nucleotide sequence determination and homology searches. High resolution melting (HRM) technique measures temperature induced strand separation of short PCR amplicons, and is able to detect variation as small as one base difference between red flesh apple cultivars and white flesh apple cultivars. We applied high resolution melting (HRM) analysis to discover single nucleotide polymorphisms (SNP) based on the predicted SNP information derived from the apple EST database. All 103 pairs of SNPs were discriminated, and the HRM profiles of amplicons were established. Putative SNPs were screened from the apple EST contigs by HRM analysis displayed specific difference between 10 red flesh apple cultivars and 11 white flesh apple cultivars. In this study, we report an efficient method to develop SNP markers from an EST database with HRM analysis in apple. These SNP markers could be useful for apple marker assisted breeding and provide a good reference for relevant research on molecular mechanisms of color variation in apple cultivars.

  • Research ArticleDecember 31, 2017

    2 296 924

    Efficiency of virus elimination in apple calli (cv. Hongro) derived from meristem culture of dormant buds

    Mi Young Kim, Jae An Chun, Kang Hee Cho, Seo Jun Park, Se Hee Kim, and Han Chan Lee

    J Plant Biotechnol 2017; 44(4): 379-387

    https://doi.org/10.5010/JPB.2017.44.4.379

    Abstract

    Abstract : Various sizes (0.2~1.2 mm) and developmental stages (referred to as Stage 1~3) of apical and lateral meristems were excised, together or separately, directly from dormant buds of apple ‘Hongro’. They were mixed infected by Apple scar skin viroid (ASSVd), Apple chlorotic leaf spot virus (ACLSV), Apple stem pitting virus (ASPV) and Apple stem grooving virus (ASGV), which are major viruses attacking apples. A total of 31 callus lines (> 10 mm in diameter) were obtained by culturing the explants on Murashige and Skoog (MS) medium supplemented with 3% sucrose, 3.0 mg/L benzyladenine (BA) and 0.1 mg/L indole-3-butyric acid (IBA), and they were subjected to RT-PCR analysis for virus detection. A high rate of virus elimination (expressed as the percentage of calli that did not amplify during RT-PCR, i.e., RT-PCR negative calli per total number of calli obtained) was achieved for ACLSV (100%), ASSVd (93.7%), and ASPV (93.7%), whereas it was only 25.8% for ASGV. ASPV was detected in the presence of 2~3 bracts. Simultaneous virus elimination of ASSVd, ASPV, ACLSV, and ASGV occurred during the meristem culture, in which the early stages of the dormant buds (Stage 1) were used, because ASGV was mostly eliminated during that stage. The results of the present study will be valuable for the production of virus-free apple trees.

  • Research ArticleDecember 31, 2017

    1 260 871

    Optimization of Agrobacterium-mediated transformation procedure for grapevine ‘Kyoho’ with carrot antifreeze protein gene

    Hye Young Shin, Gi Hoon Kim, Sang Jae Kang, Jeung-Sul Han, and Cheol Choi

    J Plant Biotechnol 2017; 44(4): 388-393

    https://doi.org/10.5010/JPB.2017.44.4.388

    Abstract

    Abstract : We report an Agrobacterium-mediated transformation procedure optimized for ‘Kyoho’ that is a major table grapevine cultivar in Korea, and its transgenic plants with antifreeze protein gene of carrot (DcAFP). The full length of DcAFP coding region in accordance with the previous report was isolated from young leaves of carrot and recombined into a plant transformation vector. Ethylene inhibitors such as silver nitrate and aminoethoxyvinylglycin (AVG) supplemented in a co-cultivation medium distinctly increased frequency of shoot regeneration when explants were sub-cultured in a selection medium: particularly ten-fold higher in treatment with 0.1 mg/L AVG than one without ethylene inhibitor. Among various antibiotics and their concentrations, the combination of 150 mg/L cefotaxime plus 150 mg/L Clavamox™ was selected for elimination of Agrobacterium cells in addition to minimization of adverse effect on shoot regeneration, while 50 mg/L kanamycin monosulfate effectively suppressed regeneration of non- transgenic shoots. Applying the elucidated culture condition, we finally obtained a total of 5 transgenic ‘Kyoho’ plantlets with DcAFP, of which integration with the grapevine genome and transcription was confirmed by nucleic acid analyses.

  • Research ArticleDecember 31, 2017

    1 329 899
    Abstract

    Abstract : This study investigated whether culture filtrates produced by Xylella fastidiosa can be used to determine the varietal susceptibility to Pierce’s disease in grapevines (Vitis spp.) as a substitute for pathogen inoculation or field screening. A bioassay of grape leaves with culture filtrates from the pathogen showed that their phytotoxicities were active and host-selective. Ethyl acetate extracts from them also showed toxicities and host selectivity in both bunches of grapes and muscadine grapes. The sensitive range of plants to the culture filtrates and their ethyl acetate extracts was consistent with the host range of the Pierce’s disease pathogen. Susceptible cultivars are sensitive to even highly diluted culture filtrates, while resistant cultivars were not affected even at their original culture filtrates. Susceptible cultivars were more sensitive to the undiluted culture filtrate than were highly diluted culture filtrates, and the younger leaves were the most sensitive to the culture filtrates in grapes. Although some European grape cultivars showed moderately susceptibility in this study, the determination of varietal resistance to Pierce’s disease by the treatment of culture filtrates of pathogens could provide valuable information for the preliminary selection of genetic resources and seedlings from hybridization in a disease resistant grape breeding program.

  • Research ArticleDecember 31, 2017

    4 540 911

    Elimination of Grapevine fleck virus from infected grapevines ‘Kyoho’ through meristem-tip culture of dormant buds

    Mi Young Kim, Kang Hee Cho, Jae An Chun, Seo Jun Park, Se Hee Kim, and Han Chan Lee

    J Plant Biotechnol 2017; 44(4): 401-408

    https://doi.org/10.5010/JPB.2017.44.4.401

    Abstract

    Abstract : Herein, we report the meristem-tip culture from dormant buds of grape ‘Kyoho’ single-infected with Grapevine fleck virus (GFkV), which is phloem-limited and transmitted by graft inoculation. We produced GFkV-free shoots without thermo- or chemotherapy using meristem-tip explants approximately 0.3 mm (73 explants) and 0.8 mm long (five explants) including shoot apical meristem, 2–5 leaf primordia, and 1–4 uncommitted primordia from dormant buds of the infected woody cuttings (stored at 4°C). Explants were cultured on Murashige and Skoog (MS) medium supplemented with 3% sucrose, 3.0 mg/L benzyladenine (BA) and 0.1 mg/L indole- 3-butyric acid (IBA). After 16 weeks of culture, shoot (10-mm long) regeneration frequency achieved from 0.3-mm explants was 4.1% and that obtained from 0.8-mm explants was 40.0%. Virus-free efficiency (expressed as the percentage of RT-PCR negative shoots regenerated) from 0.3- and 0.8-mm explants was 100% and 50%, respectively. Following in vitro multiplication, RT-PCR assays revealed identical results to assays of the first regenerated shoots. Our new methodological approach could be applied for eliminating other viruses in grapevines, as well as for producing virus-free plants in many other deciduous tree species, including fruit trees.

  • Research ArticleDecember 31, 2017

    0 342 852
    Abstract

    Abstract : The vegetation period of trees might be prolonged by the delay of the leaf senescence in autumn. Thus, we focused on the generation of senescence-delayed transgenic trees to enhance biomass production. The PagMYC2, a gene containing the basic helix-loop-helix domain, was selected as a candidate for a senescence-delayed transgenic tree. The PagMYC2 gene was specifically induced after treatment with phytohormone jasmonic acid, and upregulated by abiotic stresses such as salinity, osmotic pressure and a low temperature. The constitutive overexpression of the PagMYC2 delayed the leaf senescence and inhibited chlorophyll degradation in the transgenic poplars. Leaf senescence analysis was performed in the leaf tissues of the PagMYC2-overexpression transgenic poplars. The transgenic poplars exhibited higher photochemical efficiency than did a wild type plant under a short-day condition (6 hours light/ 18 hours darkness) or a low temperature condition (15°C) that was similar to the weather conditions of autumn. These results suggest that the PagMYC2 is a useful genetic resource to improve biomass production, which is able to sustain growth with senescence- delayed leaves for a long time in autumn.

  • Research ArticleDecember 31, 2017

    10 504 1219

    Morphological characteristics, chemical and genetic diversity of kenaf (Hibiscus cannabinus L.) genotypes

    Jaihyunk Ryu, Soon-Jae Kwon, Dong-Gun Kim, Min-Kyu Lee, Jung Min Kim, Yeong Deuk Jo, Sang Hoon Kim, Sang Wook Jeong, Kyung-Yun Kang, Se Won Kim, Jin-Baek Kim, and Si-Yong Kang

    J Plant Biotechnol 2017; 44(4): 416-430

    https://doi.org/10.5010/JPB.2017.44.4.416

    Abstract

    Abstract : The kenaf plant is used widely as food and in traditional folk medicine. This study evaluated the morphological characteristics, functional compounds, and genetic diversity of 32 kenaf cultivars from a worldwide collection. We found significant differences in the functional compounds of leaves from all cultivars, including differences in levels of chlorogenic acid isomer (CAI), chlorogenic acid (CA), kaempferol glucosyl rhamnoside isomer (KGRI), kaempferol rhamnosyl xyloside (KRX), kaemperitrin (KAPT) and total phenols (TPC). The highest TPC, KAPT, CA, and KRX contents were observed in the C22 cultivars. A significant correlation was observed between flowering time and DM yield, seed yield, and four phenolic compounds (KGRI, KRX, CAI, and TPC) (P < 0.01). To assess genetic diversity, we used 80 simple sequence repeats (SSR) primer sets and identified 225 polymorphic loci in the kenaf cultivars. The polymorphism information content and genetic diversity values ranged from 0.11 to 0.79 and 12 to 0.83, with average values of 0.39 and 0.43, respectively. The cluster analysis of the SSR markers showed that the kenaf genotypes could be clearly divided into three clusters based on flowering time. Correlations analysis was conducted for the 80 SSR markers; morphological, chemical and growth traits were found for 15 marker traits (corolla, vein, petal, leaf, stem color, leaf shape, and KGRI content) with significant marker-trait correlations. These results could be used for the selection of kenaf cultivars with improved yield and functional compounds.

JPB
Vol 52. 2025

Archives

Journal of

Plant Biotechnology

pISSN 1229-2818
eISSN 2384-1397
qr-code Download