Archives

Archives
journal-cover
Previous​ Next
  • ReviewJune 30, 2022

    2 453 509

    Fungal biopriming increases the resistance of wheat to abiotic stress

    Ashraf S. A. El-Sayed ・Hanan E. Dief ・ElSayed A. Hashem ・Ahmed M. Desouky ・Zamarud Shah ・Salwa Fawzan

    J Plant Biotechnol 2022; 49(2): 107-117

    https://doi.org/10.5010/JPB.2022.49.2.107

    Abstract

    Abstract : Increasing soil salinity is one of the global challenges that the agriculture sector in Egypt has been facing; 33% of the cultivated land in Egypt, which includes merely 3% of the entire land area, is already salinized. The present review sheds light on the role of fungal biopriming, a technique in which hydrated seeds are inoculated with beneficial fungal flora, in mitigating the deleterious influence of NaCl tension. Endophytic fungi were recognized to be able to interact with several plant species, markedly contributing to the mitigation of NaCl stress in these plants, such that some plants get impoverished to their absent associated microbes under stressful conditions.

  • Research ArticleJune 30, 2022

    1 242 454

    Proteome analysis of storage roots of two sweet potato cultivars with contrasting low temperature tolerance during storage

    Yun-Hee Kim·Chang Yoon Ji ·Ho Soo Kim ·Jung-Sung Chung ·Sung Hwan Choi ·Sang-Soo Kwak · Jeung Joo Lee

    J Plant Biotechnol 2022; 49(2): 118-123

    https://doi.org/10.5010/JPB.2022.49.2.118

    Abstract

    Abstract : To obtain information on the molecular mechanism underlying the low temperature tolerance of sweet potato [Ipomoea batatas (L.) Lam], the proteome expressed in the sweet potato cultivar Xushu 15-1 with high cold storage tolerance and in the cultivar Xushu 15-4 with low cold storage tolerance was analyzed using 2-D and MALDI-TOF/TOF analyses. Compared with the control (without cold treatment), four protein spots were newly expressed in Xushu 15-1. The expression level of one protein spot was higher in Xushu 15-4 than in Xushu 15-1. Spot 2, which was newly expressed in Xushu 15-1, was identified as sporamin. Assessment of the change in protein expression levels over 8 weeks in the storage roots of the two cultivars treated at 4°C revealed no significant difference in the expression levels in Xushu 15-1 over time. However, in Xushu 15-4, the expression level of one protein spot increased, while those of four spots decreased. Of the proteins with reduced expression levels, spots 7 and 8 were identified as actin and spots 9 and 10 were identified as fructokinase-like proteins. The present results are expected to enhance the understanding of the complex mechanism underlying the low temperature tolerance of sweet potatoes during storage and can be used to identify candidate genes for the development of new varieties of sweet potatoes with improved low temperature tolerance during cold storage in the future.

  • Research ArticleJune 30, 2022

    0 423 481

    In vitro micropropagation of two local taro cultivars for large-scale cultivation

    Noor Camellia Noor Alam·Abdul Muhaimin Abdul Kadir

    J Plant Biotechnol 2022; 49(2): 124-130

    https://doi.org/10.5010/JPB.2022.49.2.124

    Abstract

    Abstract : The application of traditional taro propagation methods for large-scale cultivation would be insufficient to meet the high demand for quality planting materials. Therefore, this study aimed to develop an in vitro micropropagation technique for two local taro cultivars (cv.), Wangi and Putih. Taro cormels were collected from the Malaysian Agricultural Research and Development Institute (MARDI) germplasm (Serdang, Malaysia). Explants were taken from the shoot tip of cormels and initially cultured on Murashige and Skoog (MS) basal media for four weeks. The explants were then transferred to different multiplication media supplemented with different types and concentrations of cytokinins such as 6-benzylaminopurine (BAP ) and Thidiazuron (TDZ). Shoot production was quantified after six weeks of culture. The highest mean number of new shoots was produced by the Wangi cultivar on MS medium supplemented with 2.0 mg/l BAP (2.10 shoots), MS medium supplemented with 0.5 mg/l TDZ (2.18 shoots), and Gamborg B5 medium supplemented with 6.0 mg/l BAP (2.43 shoots). The maximum average number of the Putih cultivar shoots was obtained on MS supplemented with 2.0 mg/l BAP (3.57 shoots). MS basal media was used for root initiation, as it produced an average of 25 roots with an 11-cm length. Various types of substrate mixtures were used during acclimatization. The best acclimatization substrate for the Wangi cultivar was 100% peat soil, whereas the Putih cultivar grew optimally in a combination of peat and perlites at a 1:1 ratio. Taro plantlets require approximately 4 to 6 weeks to acclimatize before they can be transferred to the field.

  • Research ArticleJune 30, 2022

    0 451 455

    Effect of picloram and 2,4-D on plant regeneration from mature and immature embryos of moroccan durum wheat varieties

    Khadija Ahansal ·Hanane Aadel ·Sripada Mahabala Udupa ·Fatima Gaboun ·Rabha Abdelwahd · Mohammed Ibriz ·Driss Iraqi

    J Plant Biotechnol 2022; 49(2): 131-138

    https://doi.org/10.5010/JPB.2022.49.2.131

    Abstract

    Abstract : An efficient genetic transformation protocol is a fundamental requirement for high regeneration capacity from cultivated durum wheat (Triticum durum) varieties. In this study, wereportedtheeffectsoftwoauxins,2,4-dichlorophenoxyaceticacid(2,4-D)and4-amino-3,5,6-trichloropicoli nicacid(picloram), at a concentration of 2 mg/Laloneandin-combination on the embryogenic callus and plantlet regeneration of four durum wheat varieties (Amria, Chaoui, Marouane, and Tomouh) using mature embryos (MEs) and immature embryos (ImEs). Significanteffectsofvariety,culturemedium(theauxinused),andvariety-mediuminteraction were observed on the callus weight and plantlet regeneration of both MR and ImE explants. The medium used for callus induction significantly affected plantlet regeneration (p < 0.001). Comparedto2,4-D, picloram led to a higher plantlet regeneration rate in both ME and ImE explants (19.8% and 40.86%, respectively). Plantlet regeneration also varied significantly depending on the variety and medium used. PicloramledtohighplantletregenerationofbothME and ImE explants in all varieties except Tomouh, which showed high plantlet regeneration of ME explants in 2,4-D. A comparison of ME and ImE responses indicated that ImEs are the best explants for high plantlet regeneration in durum wheat. Ourfindingssuggestthatpicloramisthebestauxin and should be used instead of 2,4-D due to its positive effect on increasing plant regeneration of durum wheat ME and ImE explants.

  • Research ArticleJune 30, 2022

    2 656 478

    Assessment of anatomical characteristics of the medicinal plant African cherry (Prunus africana) for its accurate taxonomic identification

    Richard Komakech ·Sungyu Yang ·Jun Ho Song ·Goya Choi ·Yong-Goo Kim·Denis Okello · Francis Omujal ·Grace Nambatya Kyeyune ·Motlalepula Gilbert Matsabisa ·Youngmin Kang

    J Plant Biotechnol 2022; 49(2): 139-144

    https://doi.org/10.5010/JPB.2022.49.2.139

    Abstract

    Abstract : The genus Prunus (family: Rosaceae) consists of over 400 plant species and exhibits vast biodiversity worldwide. Given the wide distribution of this genus, its taxonomic classification is important. Anatomical characteristics are conserved and stable and can therefore be used as an important tool for the taxonomic characterization of plants. Therefore, this study aimed to assess and document the anatomical characteristics of the leaf, stem, and seed of P. africana using micrographs and photographs for possible use in the identification, quality control, and phylogenetic analysis of the species. The anatomical sections of a young stem revealed a cortex consisting of isodiametric parenchyma cells, druse crystals, primary vascular bundles, and pith. The mature stem bark majorly consisted of the rhytidome, with the periderm densely arranged in multiple layers; a cluster of stone cells; and sclerenchyma. The leaf sections were hypostomatic, with stomata sizes ranging from 18.90-(22.34)-26.90 × 15.41-(18.40)-21.22 μm. The leaf sections showed the presence of characteristic druse crystals, vascular bundles, and mesophyll layers. The pericarp contained the epicarp, mesocarp, and endocarp, with their thickness being approximately 350-400, 300-350, and 30-50 μm, respectively. In addition, it contained a seed testa with a thickness of approximately 50-60 μm. The morphological and anatomical characteristics observed in P. africana leaves, stems, and seeds in this study could serve as useful data for the taxonomic identification of this species.

  • Research ArticleJune 30, 2022

    0 360 439
    Abstract

    Abstract : Airborne fine dust (FD) particles smaller than 10 μm in diameter (PM10) are one of the major causes of air pollution in East Asia, including Korea, and have become a major contributor to respiratory and skin problems. FD inordinately promotes the production of reactive oxygen species and inflammatory response in macrophages, leading to cell damage and death. Rosa rugosa, a deciduous shrub of the Rosa genus, has been used in traditional East Asian herbal medicine to treat various illnesses. The present study investigated the anti-inflammatory effects of R. rugosa organ extracts on PM10-stimulated RAW264.7 macrophages. Compared to non-treated RAW264.7 cells, treatment with 100 μg.ml-1 PM10 resulted in increased nitric oxide (NO) production, similar to lipopolysaccharide treatment. Additionally, 100 μg/ml stem extract reduced NO production by more than 45% compared to mock treatment. Furthermore, PM10-induced expression of interleukin (IL)-1β, IL-6, inducible NO synthase, and cyclooxygenase-2 was significantly reduced by stem extract treatment, indicating that the anti-inflammatory effect of the stem extract is mediated by the inhibition of pro-inflammatory mediators in PM10-stimulated RAW 264.7 cells. These results indicate that the R. rugosa stem could be considered a natural remedy with a protective effect against inflammatory responses induced by harmful airborne dust.

  • Research ArticleJune 30, 2022

    0 392 498

    Antioxidant activity of ethanol extracts and fractions from Castanea crenata inner shell

    Chan-Hwi Park ・Hyun Kang ・Sung-Gyu Lee

    J Plant Biotechnol 2022; 49(2): 150-154

    https://doi.org/10.5010/JPB.2022.49.2.150

    Abstract

    Abstract : This study examined the antioxidant activity of ethanol extract and fraction from Castanea crenata inner shell in vitro. Antioxidant activity was evaluated through total polyphenol and flavonoid contents and DPPH radical scavenging ability using electron spin resonance (ESR). The total polyphenol contents of the 70% ethanol extract and ethyl acetate fraction were 39.76 mg GAE/g and 323.92 mg GAE/g (p < 0.05). The total polyphenol contents of the ethyl acetate fraction were higher than other fractions. Furthermore, the total flavonoid contents of ethyl acetate were higher than other fractions at 13.12 mg QE/g (p < 0.05). In DPPH radical scavenging ability measurement, the RC50 value of ethyl acetate was lower than ascorbic acid at 2.27 μg/mL (p < 0.05). In conclusion, this result showed that the ethyl acetate fraction of Castanea crenata inner shell 70% ethanol extract has high antioxidant activity.

  • Research ArticleJune 30, 2022

    1 476 463
    Abstract

    Abstract : This study investigated the antioxidant and anti-inflammatory effects of seed ethanol extracts from Rubus coreanus Miquel (SERC). To investigate the antioxidant activity, total polyphenol and flavonoid content, ABTS and DPPH radical scavenging activity, and reducing power were measured. The total polyphenol and flavonoid contents in seed ethanol extracts of R. coreanus Miq. were 4.09 μg gallic acid equivalents (GAE)/mg and 16.25 μg quercetin equivalents (QE)/mg, respectively. DPPH and ABTS radical scavenging activity showed concentration-dependent scavenging activity, and the RC50 values of SERC were 26.68 μg/mL and 39.30 μg/mL, respectively. Moreover, the ferric reducing antioxidant power (FRAP) assay was performed to assess the reducing power, and SERC showed 0.61 ± 0.01 mM FeSO4 E/mg. To measure the anti-inflammatory effect, the cytotoxicity and nitric oxide (NO) production inhibitory efficacy in RAW 264.7 cells was confirmed. SERC showed a NO production inhibitory effect at 500 μg/mL without cytotoxicity. As a result of verifying the antioxidant and anti-inflammatory activity using SERC, its potential as an antioxidant and anti-inflammatory material was confirmed.

JPB
Vol 51. 2024

Archives

Journal of

Plant Biotechnology

pISSN 1229-2818
eISSN 2384-1397
qr-code Download