J Plant Biotechnol 2022; 49(1): 30-38
Published online March 31, 2022
https://doi.org/10.5010/JPB.2022.49.1.030
© The Korean Society of Plant Biotechnology
박태호
대구대학교 원예학과
Correspondence to : thzoo@daegu.ac.kr
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Solanum brevicaule is one of the tuber-bearing wild Solanum species. Because of its resistance to several important pathogens infecting potatoes during cultivation, it can be used for potato breeding. However, the fact that S. brevicaule used in this study has an EBN value of two causes the sexual reproduction barriers between the species and cultivated potatoes. In this study, specific markers for discriminating S. brevicaule from other Solanum species were developed on the basis of the results of sequence alignments with the whole chloroplast genomes of S. brevicaule and seven other Solanum species. The chloroplast genome of S. brevicaule was completed by next-generation sequencing technology described in other recent studies. The total sequence length of the chloroplast genome of S. brevicaule is 155,531 bp. Its structure and gene composition are similar to those of other Solanum species. Phylogenetic analysis revealed that S. brevicaule was closely grouped with other Solanum species. BLASTN search showed that its genome sequence had 99.99% and 99.89% identity with those of S. spegazzinii (MH021562) and S. kurtzianum (MH021495), respectively. Sequence alignment identified 27 SNPs that were specific to S. brevicaule. Thus, three PCR-based CAPS markers specific to S. brevicaule were developed on the basis of these SNPs. This study will facilitate in further studies on evolutionary and breeding aspects in Solanum species.
Keywords cpDNA, PCR-based marker, Potato, SNPs, Solanum brevicaule
재배종 감자(
체세포 잡종을 감자 품종 육성에 이용하기 위해서는 체세포 융합 이후 융합계통이 실질적으로 융합이 이루어졌는지 확인하고 육종에 활용할 수 있는 계통을 선발하는 과정이 필요하며, 이를 위해 다양한 생명공학적 기술들이 이용되고 있다(Cho and Park 2014). 그중 가장 많이 이용되는 것은 분자표지를 이용하는 것으로 핵 내 DNA의 염기서열 정보뿐 만 아니라 세포질의 미토콘드리아나 엽록체에 존재하는 DNA 염기서열 정보를 활용하기도 한다(Patel et al. 2011; Sarkar et al. 2011; Thieme et al. 2010; Wang et al. 2011; Yu et al. 2012). 이 중, 엽록체 DNA의 경우 현재까지 보고된 다양한 감자 야생종의 엽록체 DNA의 유전적 구성, 구조와 크기 등을 고려할 때 매우 유사한 것으로 알려져 있으나(Palmer 1991; Saski et al. 2005; Yurina and Odintosova 1998), 여전히 종 간에 유전자의 재배치에 따른 염기서열에서의 InDel, SNP, SSR 등의 다형성을 보여 이들 정보를 이용한 분자표지 개발이 가능한 것으로 보고되고 있다(Calsa Junior et al. 2004; Jheng et al. 2012; Kim and Park 2019, 2020a, 2020b; Park 2021b; Saski et al. 2005). 이에 본 연구에서는 앞서 Park (2019)에 의해 간략히 보고된 바 있는
엽록체 전장 유전체 분석에는
모든 식물재료는 국립식량과학원 고령지농업연구소로부터 분양받아 기내식물체로 증식되어 이용되었으며, 각각의 식물재료를 대상으로 한 DNA는 기내 증식 유식물체 100mg을 채취하여 Genomic DNA Extraction kit (Plants) (RBC, New Taipei City, Taiwan)를 이용하여 추출하였다.
Table 1 . Comparative analysis of the chloroplast genome sequence of
Species | Accession no. | Total Length (bp) | GC content (%) | Total no. of genes | No. of tRNA | No. of rRNA | Reference |
---|---|---|---|---|---|---|---|
MK036507 | 155,531 | 37.87 | 135 | 36 | 4 | In this study | |
MK036508 | 155,558 | 37.87 | 135 | 36 | 4 | Cho et al. (2019) | |
MF471372 | 155,549 | 37.87 | 135 | 36 | 4 | Kim and Park (2020b) | |
MF471373 | 155,567 | 37.87 | 135 | 36 | 4 | Kim and Park (2020a) | |
MF471371 | 155,532 | 37.89 | 136 | 36 | 4 | Kim and Park (2019) | |
KY419708 | 155,533 | 37.88 | 137 | 39 | 4 | Kim et al. (2018) | |
KM489054 | 155,525 | 37.88 | 133 | 33 | 4 | Cho et al. (2016) | |
KM489055 | 155,432 | 37.90 | 139 | 39 | 4 | Cho and Park (2016) | |
KM489056 | 155,312 | 37.88 | 130 | 30 | 4 | Cho et al. (2016) | |
DQ347958 | 155,371 | 37.88 | 133 | 30 | 4 | Daniell et al. (2006) | |
NC008096 | 155,296 | 37.88 | 131 | 36 | 4 | Gargano et al. (2005) |
*Data have been partially adopted from Park (2021b).
앞서 확인된
Table 2 . Primers and restriction enzymes for generating
Marker name | Region | Sa | Primer sequence | Size (bp)b | REc |
---|---|---|---|---|---|
SB2_SNP_3 | F | AATACCATGGTCTAATAATC | 688 | ||
R | TAATAGTACATCCCAACAGG | ||||
SB2_SNP_5 | F | AATAACTCCCTTTGGTATTC | 653 | ||
R | TGTGTTATATCTGGTAATCC | ||||
SB2_SNP_8 | F | TACGGAATAGAAAGATTCC | 680 | ||
R | ATTCATGAACTAATGTACTC |
aF and R indicate forward and reverse strand of primers.
bThe expected size of PCR fragments is measured on the basis of the sequence of
cRestriction enzymes generating
다양한
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2021R1F1A1045981).
J Plant Biotechnol 2022; 49(1): 30-38
Published online March 31, 2022 https://doi.org/10.5010/JPB.2022.49.1.030
Copyright © The Korean Society of Plant Biotechnology.
박태호
대구대학교 원예학과
Tae-Ho Park
(Department of Horticulture, Daegu University, Gyeongsan 38453, South Korea)
Correspondence to:thzoo@daegu.ac.kr
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Solanum brevicaule is one of the tuber-bearing wild Solanum species. Because of its resistance to several important pathogens infecting potatoes during cultivation, it can be used for potato breeding. However, the fact that S. brevicaule used in this study has an EBN value of two causes the sexual reproduction barriers between the species and cultivated potatoes. In this study, specific markers for discriminating S. brevicaule from other Solanum species were developed on the basis of the results of sequence alignments with the whole chloroplast genomes of S. brevicaule and seven other Solanum species. The chloroplast genome of S. brevicaule was completed by next-generation sequencing technology described in other recent studies. The total sequence length of the chloroplast genome of S. brevicaule is 155,531 bp. Its structure and gene composition are similar to those of other Solanum species. Phylogenetic analysis revealed that S. brevicaule was closely grouped with other Solanum species. BLASTN search showed that its genome sequence had 99.99% and 99.89% identity with those of S. spegazzinii (MH021562) and S. kurtzianum (MH021495), respectively. Sequence alignment identified 27 SNPs that were specific to S. brevicaule. Thus, three PCR-based CAPS markers specific to S. brevicaule were developed on the basis of these SNPs. This study will facilitate in further studies on evolutionary and breeding aspects in Solanum species.
Keywords: cpDNA, PCR-based marker, Potato, SNPs, Solanum brevicaule
재배종 감자(
체세포 잡종을 감자 품종 육성에 이용하기 위해서는 체세포 융합 이후 융합계통이 실질적으로 융합이 이루어졌는지 확인하고 육종에 활용할 수 있는 계통을 선발하는 과정이 필요하며, 이를 위해 다양한 생명공학적 기술들이 이용되고 있다(Cho and Park 2014). 그중 가장 많이 이용되는 것은 분자표지를 이용하는 것으로 핵 내 DNA의 염기서열 정보뿐 만 아니라 세포질의 미토콘드리아나 엽록체에 존재하는 DNA 염기서열 정보를 활용하기도 한다(Patel et al. 2011; Sarkar et al. 2011; Thieme et al. 2010; Wang et al. 2011; Yu et al. 2012). 이 중, 엽록체 DNA의 경우 현재까지 보고된 다양한 감자 야생종의 엽록체 DNA의 유전적 구성, 구조와 크기 등을 고려할 때 매우 유사한 것으로 알려져 있으나(Palmer 1991; Saski et al. 2005; Yurina and Odintosova 1998), 여전히 종 간에 유전자의 재배치에 따른 염기서열에서의 InDel, SNP, SSR 등의 다형성을 보여 이들 정보를 이용한 분자표지 개발이 가능한 것으로 보고되고 있다(Calsa Junior et al. 2004; Jheng et al. 2012; Kim and Park 2019, 2020a, 2020b; Park 2021b; Saski et al. 2005). 이에 본 연구에서는 앞서 Park (2019)에 의해 간략히 보고된 바 있는
엽록체 전장 유전체 분석에는
모든 식물재료는 국립식량과학원 고령지농업연구소로부터 분양받아 기내식물체로 증식되어 이용되었으며, 각각의 식물재료를 대상으로 한 DNA는 기내 증식 유식물체 100mg을 채취하여 Genomic DNA Extraction kit (Plants) (RBC, New Taipei City, Taiwan)를 이용하여 추출하였다.
Table 1 . Comparative analysis of the chloroplast genome sequence of
Species | Accession no. | Total Length (bp) | GC content (%) | Total no. of genes | No. of tRNA | No. of rRNA | Reference |
---|---|---|---|---|---|---|---|
MK036507 | 155,531 | 37.87 | 135 | 36 | 4 | In this study | |
MK036508 | 155,558 | 37.87 | 135 | 36 | 4 | Cho et al. (2019) | |
MF471372 | 155,549 | 37.87 | 135 | 36 | 4 | Kim and Park (2020b) | |
MF471373 | 155,567 | 37.87 | 135 | 36 | 4 | Kim and Park (2020a) | |
MF471371 | 155,532 | 37.89 | 136 | 36 | 4 | Kim and Park (2019) | |
KY419708 | 155,533 | 37.88 | 137 | 39 | 4 | Kim et al. (2018) | |
KM489054 | 155,525 | 37.88 | 133 | 33 | 4 | Cho et al. (2016) | |
KM489055 | 155,432 | 37.90 | 139 | 39 | 4 | Cho and Park (2016) | |
KM489056 | 155,312 | 37.88 | 130 | 30 | 4 | Cho et al. (2016) | |
DQ347958 | 155,371 | 37.88 | 133 | 30 | 4 | Daniell et al. (2006) | |
NC008096 | 155,296 | 37.88 | 131 | 36 | 4 | Gargano et al. (2005) |
*Data have been partially adopted from Park (2021b)..
앞서 확인된
Table 2 . Primers and restriction enzymes for generating
Marker name | Region | Sa | Primer sequence | Size (bp)b | REc |
---|---|---|---|---|---|
SB2_SNP_3 | F | AATACCATGGTCTAATAATC | 688 | ||
R | TAATAGTACATCCCAACAGG | ||||
SB2_SNP_5 | F | AATAACTCCCTTTGGTATTC | 653 | ||
R | TGTGTTATATCTGGTAATCC | ||||
SB2_SNP_8 | F | TACGGAATAGAAAGATTCC | 680 | ||
R | ATTCATGAACTAATGTACTC |
aF and R indicate forward and reverse strand of primers..
bThe expected size of PCR fragments is measured on the basis of the sequence of
cRestriction enzymes generating
다양한
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2021R1F1A1045981).
Table 1 . Comparative analysis of the chloroplast genome sequence of
Species | Accession no. | Total Length (bp) | GC content (%) | Total no. of genes | No. of tRNA | No. of rRNA | Reference |
---|---|---|---|---|---|---|---|
MK036507 | 155,531 | 37.87 | 135 | 36 | 4 | In this study | |
MK036508 | 155,558 | 37.87 | 135 | 36 | 4 | Cho et al. (2019) | |
MF471372 | 155,549 | 37.87 | 135 | 36 | 4 | Kim and Park (2020b) | |
MF471373 | 155,567 | 37.87 | 135 | 36 | 4 | Kim and Park (2020a) | |
MF471371 | 155,532 | 37.89 | 136 | 36 | 4 | Kim and Park (2019) | |
KY419708 | 155,533 | 37.88 | 137 | 39 | 4 | Kim et al. (2018) | |
KM489054 | 155,525 | 37.88 | 133 | 33 | 4 | Cho et al. (2016) | |
KM489055 | 155,432 | 37.90 | 139 | 39 | 4 | Cho and Park (2016) | |
KM489056 | 155,312 | 37.88 | 130 | 30 | 4 | Cho et al. (2016) | |
DQ347958 | 155,371 | 37.88 | 133 | 30 | 4 | Daniell et al. (2006) | |
NC008096 | 155,296 | 37.88 | 131 | 36 | 4 | Gargano et al. (2005) |
*Data have been partially adopted from Park (2021b)..
Table 2 . Primers and restriction enzymes for generating
Marker name | Region | Sa | Primer sequence | Size (bp)b | REc |
---|---|---|---|---|---|
SB2_SNP_3 | F | AATACCATGGTCTAATAATC | 688 | ||
R | TAATAGTACATCCCAACAGG | ||||
SB2_SNP_5 | F | AATAACTCCCTTTGGTATTC | 653 | ||
R | TGTGTTATATCTGGTAATCC | ||||
SB2_SNP_8 | F | TACGGAATAGAAAGATTCC | 680 | ||
R | ATTCATGAACTAATGTACTC |
aF and R indicate forward and reverse strand of primers..
bThe expected size of PCR fragments is measured on the basis of the sequence of
cRestriction enzymes generating
Ju-Ryeon Jo ・Tae-Ho Park
J Plant Biotechnol 2024; 51(1): 158-166Ju-Ryeon Jo ・Tae-Ho Park
J Plant Biotechnol 2024; 51(1): 143-151Seoyeon Son ・Tae-Ho Park
J Plant Biotechnol 2024; 51(1): 121-128
Journal of
Plant Biotechnology