J Plant Biotechnol 2022; 49(1): 39-45
Published online March 31, 2022
https://doi.org/10.5010/JPB.2022.49.1.039
© The Korean Society of Plant Biotechnology
Correspondence to : e-mail: pgel2006@gmail.com
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Conserved domains are defined as recurring units in molecular evolution and are commonly used to interpret the molecular function and biochemical structure of proteins. Herein, the ADP-glucose pyrophosphorylase (AGPase) amino acid sequences of three species of the Ipomoea genus [Ipomoea trifida, I. triloba, and I. batatas (L.) Lam. (sweetpotato)] were identified to investigate their physicochemical and biochemical characteristics. The molecular weight, isoelectric point, instability index, and grand average of hyropathy markedly differed among the three species. The aliphatic index values of sweetpotato AGPase proteins were higher in the small subunit than in the large subunit. The AGPase proteins from sweetpotato were found to contain an LbH_G1P_AT_C domain in the C-terminal region and various domains (NTP_transferase, ADP_Glucose_PP, or Glyco_tranf_GTA) in the N-terminal region. Conversely, most of its two relatives (I. trifida and I. triloba) were found to only contain the NTP_transferase domain in the N-terminal region. These findings suggested that these conserved domains were species-specific and related to the subunit types of AGPase proteins. The study may enable research on the AGPase-related specific characteristics of sweetpotatoes that do not exist in the other two species, such as starch metabolism and tuberization mechanism.
Keywords ADP-glucose pyrophosphorylase, conserved domain, AGPase small subunit, AGPase large subunit, tuberization, sweetpotato
ADP-glucose pyrophosphorylase (AGPase; EC: 2.7.7.27) is a regulatory enzyme that catalyzes the biosynthesis of alpha 1,4-glucans (glycogen or starch) in photosynthetic bacteria and plants (Smith-White and Preiss 1992). In higher plants, it is a heterotetramer composed of two different but closely related subunits (α2β2): “small” (α subunit, 50-54 kDa) and “large” subunits (β subunit, 51-60 kDa) based on the size difference (Ballicora et al. 2004; Smith-White and Preiss 1992). The small subunit is responsible for the catalytic activity, whereas the large subunit plays regulatory roles (Ballicora et al. 2004; Crevillén et al. 2003). These subunits are necessary for the optimal activity of the native enzyme in plants; a lack of one of the subunits will reduce the activity of the AGPase and influence the synthesis of starch (Li and Preiss 1992). In sweetpotato, AGPase is a key enzyme controlling starch synthesis and is considered an important determinant of the sink activity of the roots (Tsubone et al. 2000; Yatomi et al. 1996). Many AGPase genes have been cloned and studied in sweetpotatoes (Lee et al. 2000; Seo et al. 2015; Zhou et al. 2016).
The protein domains can be considered distinct functions and structural units of proteins that are usually identified as repeating (sequence or structural) units (Ingolfsson and Yona 2008; Li et al. 2012). In molecular evolution, these domains may have been reorganized in different arrangements in protein function annotation (Ingolfsson and Yona 2008), protein structure determination (Marchler-Bauer et al. 2012), and protein engineering (Guerois and Serrano 2001). Conserved domains are defined by a conserved domain database (CDD) as repeating units in molecular evolution, the extent of which can be determined by sequence and structural analysis (Marchler-Bauer et al. 2012).
Sweetpotato (
Sweetpotato Genomics Resource (http://sweetpotato.plantbiology.msu.edu/index.shtml) and NCBI databases (https://www.ncbi.nlm.nih.gov/) were used to identify the AGPase domain-containing proteins in the three species. The amino acid sequence of the AGPase protein
The ProtParam (http://www.expasy.org/tools/protparam.html) of ExPASy (Expert protein analysis system, https://www.expasy.org/) tool was used to compute the physicochemical characteristics of AGPase proteins in the three species, including the number of amino acids, molecular weight, theoretical isoelectric point (pI), instability (II) and aliphatic index (AI), and grand average of hydropathy (GRAVY) (Gasteiger et al. 2005).
The amino acid sequences of the AGPase proteins in FASTA formats were used for multiple-sequence alignment using the CLC Sequence Viewer 7.6 software (CLC bio, Aarhus, Denmark). A neighbor-joining phylogenetic tree was constructed using MEGA X 10.1 software (Pennsylvania State University, US) with the following parameters: bootstrap analysis of 1,000 replicates, Poisson correction method, and pairwise deletion (Kumar et al. 2018).
Pfam (http://pfam.janelia.org/), SMART (http://smart.embl-heidelberg.de/), and CDD (http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) were used to explore the conserved domains of the AGPase proteins. The selected conserved domains were drawn using DOG 2.0.1 software (Ren et al. 2009).
Forty-five AGPase domain-containing proteins from
Table 1 . Biochemical and physicochemical characteristics of AGPase proteins in the three species
Species | Accession No. | Subunit | Amino acids | Molecular weight (MW) | Isoelectric point (pI) | Instability index (II) | Aliphatic index (AI) | Grand average of hydropathy (GRAVY) |
---|---|---|---|---|---|---|---|---|
BAF47744.2 | Small | 522 | 57155.24 | 6.74 | 39.79 | 91.24 | -0.178 | |
AFL55400.1 | Small | 522 | 57143.19 | 6.74 | 39.50 | 90.48 | -0.188 | |
AAS66988.1 | Small | 522 | 57188.32 | 6.74 | 39.42 | 91.23 | -0.166 | |
AAA19648.1 | Small | 303 | 33530.51 | 5.52 | 35.06 | 96.30 | -0.129 | |
CAA86726.1 | Small | 302 | 33374.32 | 5.39 | 35.14 | 96.62 | -0.115 | |
CAA58473.1 | Small | 427 | 47300.22 | 6.13 | 36.29 | 97.12 | -0.119 | |
AFL55401.1 | Small | 523 | 57164.19 | 8.02 | 37.38 | 90.15 | -0.194 | |
BAF47745.1 | Small | 523 | 57178.21 | 8.02 | 37.38 | 90.34 | -0.190 | |
AAS66987.1 | Small | 523 | 57179.24 | 8.02 | 36.64 | 90.52 | -0.183 | |
AFL55399.1 | Large | 525 | 58055.43 | 8.92 | 34.29 | 88.44 | -0.164 | |
AGB85112.1 | Large | 525 | 57990.31 | 8.82 | 33.14 | 87.80 | -0.158 | |
BAF47749.1 | Large | 525 | 58117.46 | 8.93 | 35.26 | 87.50 | -0.164 | |
AFL55398.1 | Large | 518 | 57269.40 | 6.37 | 29.97 | 85.08 | -0.178 | |
BAF47748.1 | Large | 518 | 57269.36 | 6.25 | 29.73 | 85.08 | -0.177 | |
AGB85111.1 | Large | 517 | 57376.52 | 6.41 | 28.99 | 84.29 | -0.190 | |
AFL55396.1 | Unknown | 517 | 57577.74 | 7.01 | 35.32 | 86.36 | -0.245 | |
BAF47746.1 | Large | 517 | 57616.78 | 6.69 | 36.61 | 87.31 | -0.234 | |
CAB52196.1 | Unknown | 450 | 50090.21 | 5.38 | 35.94 | 89.04 | -0.168 | |
BAF47747.1 | Large | 515 | 57562.13 | 7.08 | 31.74 | 88.99 | -0.204 | |
AFL55397.1 | Large | 515 | 57485.94 | 6.44 | 32.78 | 88.80 | -0.194 | |
AGB85109.1 | Large | 517 | 57527.64 | 6.44 | 37.97 | 87.50 | -0.237 | |
CAB55495.1 | Unknown | 490 | 54707.53 | 7.14 | 36.97 | 89.33 | -0.227 | |
AGB85110.1 | Large | 515 | 57559.03 | 6.31 | 31.13 | 89.55 | -0.212 | |
AAC21562.1 | Large | 517 | 57686.94 | 7.55 | 38.55 | 86.92 | -0.234 | |
CAB55496.1 | Large | 385 | 43443.49 | 5.35 | 32.30 | 85.82 | -0.224 | |
CAB51610.1 | Large | 306 | 34636.48 | 5.13 | 37.96 | 86.63 | -0.300 | |
itf11g03360.t1 | Unknown | 522 | 57155.24 | 6.74 | 39.79 | 91.23 | -0.178 | |
itf13g19620.t1 | Large | 525 | 58186.57 | 9.01 | 34.65 | 87.89 | -0.170 | |
itf02g13930.t1 | Unknown | 523 | 57178.21 | 8.02 | 37.40 | 90.15 | -0.194 | |
itf01g13780.t1 | Unknown | 351 | 39640.79 | 9.53 | 65.48 | 93.02 | -0.191 | |
itf00g32520.t1 | Unknown | 351 | 39204.50 | 5.40 | 46.38 | 99.46 | 0.111 | |
itf09g27040.t1 | Small | 474 | 52547.38 | 6.15 | 47.76 | 85.99 | -0.240 | |
itf06g21950.t1 | Large | 517 | 57244.40 | 6.37 | 28.90 | 84.87 | -0.174 | |
itf08g03850.t1 | Large | 517 | 57594.29 | 8.50 | 28.36 | 85.98 | -0.201 | |
itf05g24300.t1 | Unknown | 416 | 46019.99 | 5.76 | 33.92 | 99.81 | 0.057 | |
itf10g06320.t1 | Unknown | 427 | 48406.64 | 5.64 | 37.09 | 99.53 | 0.111 | |
itb02g09380.t1 | Unknown | 523 | 57164.19 | 8.02 | 37.38 | 90.15 | -0.194 | |
itb11g03360.t1 | Unknown | 522 | 57155.24 | 6.74 | 39.79 | 91.23 | -0.178 | |
itb13g23180.t1 | Large | 266 | 29618.76 | 5.68 | 32.92 | 92.74 | -0.106 | |
itb09g31010.t1 | Small | 475 | 52687.57 | 6.16 | 48.56 | 86.63 | -0.236 | |
itb06g20570.t1 | Large | 517 | 57203.30 | 6.51 | 29.78 | 83.73 | -0.185 | |
itb08g03970.t1 | Large | 517 | 57626.35 | 8.50 | 28.36 | 85.42 | -0.206 | |
itb09g17690.t1 | Unknown | 165 | 18349.10 | 4.71 | 32.45 | 92.24 | 0.049 | |
itb05g25020.t1 | Unknown | 416 | 46032.99 | 5.76 | 33.46 | 99.57 | 0.050 | |
itb11g22920.t4 | Unknown | 415 | 45485.48 | 6.23 | 41.54 | 100.48 | 0.045 |
The isoelectric point (pI), which represents the average pH of the molecule without a net electrical charge or electrically neutrality, was 4.71-9.53 in all categories. The average pI of
Six types of conserved domains that showed different distributions were included in the AGPase proteins of these three species (Fig. 1b, Table 2). Most of the
Table 2 . Conserved domain prediction of the AGPase in the three species
Species | Accession No. | Amino acid | Conserved domain 1 | Conserved domain 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ID | Name | Start | End | ID | Name | Start | End | |||
BAF47744.2 | 522 | cd02508 | ADP_Glucose_PP | 103 | 352 | cd04651 | LbH_G1P_AT_C | 390 | 516 | |
AFL55400.1 | 522 | cd02508 | ADP_Glucose_PP | 103 | 352 | cd04651 | LbH_G1P_AT_C | 390 | 516 | |
AAS66988.1 | 522 | cd02508 | ADP_Glucose_PP | 103 | 352 | cd04651 | LbH_G1P_AT_C | 390 | 516 | |
AAA19648.1 | 303 | cd00761 | Glyco_tranf_GTA_type | 1 | 147 | cd04651 | LbH_G1P_AT_C | 171 | 297 | |
CAA86726.1 | 302 | cd00761 | Glyco_tranf_GTA_type | 1 | 146 | cd04651 | LbH_G1P_AT_C | 170 | 296 | |
CAA58473.1 | 427 | cd02508 | ADP_Glucose_PP | 1 | 257 | cd04651 | LbH_G1P_AT_C | 295 | 421 | |
AFL55401.1 | 523 | cd02508 | ADP_Glucose_PP | 104 | 353 | cd04651 | LbH_G1P_AT_C | 391 | 517 | |
BAF47745.1 | 523 | cd02508 | ADP_Glucose_PP | 104 | 353 | cd04651 | LbH_G1P_AT_C | 391 | 517 | |
AAS66987.1 | 523 | cd02508 | ADP_Glucose_PP | 104 | 353 | cd04651 | LbH_G1P_AT_C | 391 | 517 | |
AFL55399.1 | 525 | cd04181 | NTP_transferase | 93 | 307 | cd04651 | LbH_G1P_AT_C | 393 | 519 | |
AGB85112.1 | 525 | cd04181 | NTP_transferase | 93 | 307 | cd04651 | LbH_G1P_AT_C | 393 | 519 | |
BAF47749.1 | 525 | cd04181 | NTP_transferase | 93 | 307 | cd04651 | LbH_G1P_AT_C | 393 | 519 | |
AFL55398.1 | 518 | cd04181 | NTP_transferase | 88 | 363 | cd04651 | LbH_G1P_AT_C | 386 | 512 | |
BAF47748.1 | 518 | cd04181 | NTP_transferase | 88 | 363 | cd04651 | LbH_G1P_AT_C | 386 | 512 | |
AGB85111.1 | 517 | cd04181 | NTP_transferase | 87 | 362 | cd04651 | LbH_G1P_AT_C | 385 | 511 | |
AFL55396.1 | 517 | cd04181 | NTP_transferase | 87 | 362 | cd04651 | LbH_G1P_AT_C | 385 | 511 | |
BAF47746.1 | 517 | cd04181 | NTP_transferase | 87 | 362 | cd04651 | LbH_G1P_AT_C | 385 | 511 | |
CAB52196.1 | 450 | cd04181 | NTP_transferase | 20 | 295 | cd04651 | LbH_G1P_AT_C | 318 | 444 | |
BAF47747.1 | 515 | cd04181 | NTP_transferase | 85 | 360 | cd04651 | LbH_G1P_AT_C | 383 | 509 | |
AFL55397.1 | 515 | cd04181 | NTP_transferase | 85 | 360 | cd04651 | LbH_G1P_AT_C | 383 | 509 | |
AGB85109.1 | 517 | cd04181 | NTP_transferase | 87 | 362 | cd04651 | LbH_G1P_AT_C | 385 | 511 | |
CAB55495.1 | 490 | cd04181 | NTP_transferase | 60 | 335 | cd04651 | LbH_G1P_AT_C | 358 | 484 | |
AGB85110.1 | 515 | cd04181 | NTP_transferase | 85 | 360 | cd04651 | LbH_G1P_AT_C | 383 | 509 | |
AAC21562.1 | 517 | cd04181 | NTP_transferase | 87 | 362 | cd04651 | LbH_G1P_AT_C | 385 | 511 | |
CAB55496.1 | 385 | cd00761 | Glyco_tranf_GTA_type | 2 | 230 | cd04651 | LbH_G1P_AT_C | 253 | 379 | |
CAB51610.1 | 306 | cd00761 | Glyco_tranf_GTA_type | 1 | 151 | cd04651 | LbH_G1P_AT_C | 174 | 300 | |
itf11g03360.t1 | 522 | cd04181 | NTP_transferase | 94 | 367 | |||||
itf13g19620.t1 | 525 | cd04181 | NTP_transferase | 94 | 371 | |||||
itf02g13930.t1 | 523 | cd04181 | NTP_transferase | 95 | 368 | |||||
itf01g13780.t1 | 351 | cd04181 | NTP_transferase | 243 | 299 | |||||
itf00g32520.t1 | 351 | cd04181 | NTP_transferase | 127 | 182 | |||||
itf09g27040.t1 | 474 | cd04181 | NTP_transferase | 56 | 322 | |||||
itf06g21950.t1 | 517 | cd04181 | NTP_transferase | 86 | 363 | |||||
itf08g03850.t1 | 517 | cd04181 | NTP_transferase | 86 | 363 | |||||
itf05g24300.t1 | 416 | cd04181 | NTP_transferase | 11 | 205 | pfam00132 | Hexapep | 297 | 329 | |
itf10g06320.t1 | 427 | cd04181 | NTP_transferase | 109 | 161 | pfam00118 | Cpn60_TCP1 | 175 | 212 | |
itb02g09380.t1 | 523 | cd04181 | NTP_transferase | 95 | 368 | |||||
itb11g03360.t1 | 522 | cd04181 | NTP_transferase | 94 | 367 | |||||
itb13g23180.t1 | 266 | cd04181 | NTP_transferase | 1 | 112 | |||||
itb09g31010.t1 | 475 | cd04181 | NTP_transferase | 57 | 323 | |||||
itb06g20570.t1 | 517 | cd04181 | NTP_transferase | 86 | 363 | |||||
itb08g03970.t1 | 517 | cd04181 | NTP_transferase | 86 | 363 | |||||
itb09g17690.t1 | 165 | cd04181 | NTP_transferase | 2 | 30 | cd04181 | NTP_transferase | 38 | 85 | |
itb05g25020.t1 | 416 | cd04181 | NTP_transferase | 11 | 205 | pfam00132 | Hexapep | 297 | 329 | |
itb11g22920.t4 | 415 | cd04181 | NTP_transferase | 10 | 211 | pfam00132 | Hexapep | 300 | 328 |
The evolutionary history was inferred using the Neighbor-Joining method (Saitou and Nei 1987). Fig. 1a presents the optimal tree with the sum of the branch length = 29.09. This analysis involved 45 amino acid sequences and 512 positions. The conserved domains were labeled on the amino acid sequences (Fig. 1a). The length and type of the domain were different for each species. Based on the phylogenetic tree, AGPase proteins from these species were grouped together according to large and small subunit type.
AGPase is an important factor involved in the tuberous root of sweetpotatoes because it is a vital enzyme in starch synthesis (Tsubone et al. 2000; Yatomi et al. 1996). Although it is also present in
A difference in the domain composition of AGPase was observed between sweetpotatoes and the other
Sweetpotato AGPases have relatively conserved domains compared to
J Plant Biotechnol 2022; 49(1): 39-45
Published online March 31, 2022 https://doi.org/10.5010/JPB.2022.49.1.039
Copyright © The Korean Society of Plant Biotechnology.
Hualin Nie ·Sujung Kim ·Jongbo Kim·Suk-Yoon Kwon ·Sun-Hyung Kim
Department of Environmental Horticulture, University of Seoul, Seoul 02504, Korea
Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea
Department of Biotechnology, College of Biomedical & Health Sciences, Global Campus. Konkuk University, ChoongJu, 27478, Korea
Correspondence to:e-mail: pgel2006@gmail.com
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Conserved domains are defined as recurring units in molecular evolution and are commonly used to interpret the molecular function and biochemical structure of proteins. Herein, the ADP-glucose pyrophosphorylase (AGPase) amino acid sequences of three species of the Ipomoea genus [Ipomoea trifida, I. triloba, and I. batatas (L.) Lam. (sweetpotato)] were identified to investigate their physicochemical and biochemical characteristics. The molecular weight, isoelectric point, instability index, and grand average of hyropathy markedly differed among the three species. The aliphatic index values of sweetpotato AGPase proteins were higher in the small subunit than in the large subunit. The AGPase proteins from sweetpotato were found to contain an LbH_G1P_AT_C domain in the C-terminal region and various domains (NTP_transferase, ADP_Glucose_PP, or Glyco_tranf_GTA) in the N-terminal region. Conversely, most of its two relatives (I. trifida and I. triloba) were found to only contain the NTP_transferase domain in the N-terminal region. These findings suggested that these conserved domains were species-specific and related to the subunit types of AGPase proteins. The study may enable research on the AGPase-related specific characteristics of sweetpotatoes that do not exist in the other two species, such as starch metabolism and tuberization mechanism.
Keywords: ADP-glucose pyrophosphorylase, conserved domain, AGPase small subunit, AGPase large subunit, tuberization, sweetpotato
ADP-glucose pyrophosphorylase (AGPase; EC: 2.7.7.27) is a regulatory enzyme that catalyzes the biosynthesis of alpha 1,4-glucans (glycogen or starch) in photosynthetic bacteria and plants (Smith-White and Preiss 1992). In higher plants, it is a heterotetramer composed of two different but closely related subunits (α2β2): “small” (α subunit, 50-54 kDa) and “large” subunits (β subunit, 51-60 kDa) based on the size difference (Ballicora et al. 2004; Smith-White and Preiss 1992). The small subunit is responsible for the catalytic activity, whereas the large subunit plays regulatory roles (Ballicora et al. 2004; Crevillén et al. 2003). These subunits are necessary for the optimal activity of the native enzyme in plants; a lack of one of the subunits will reduce the activity of the AGPase and influence the synthesis of starch (Li and Preiss 1992). In sweetpotato, AGPase is a key enzyme controlling starch synthesis and is considered an important determinant of the sink activity of the roots (Tsubone et al. 2000; Yatomi et al. 1996). Many AGPase genes have been cloned and studied in sweetpotatoes (Lee et al. 2000; Seo et al. 2015; Zhou et al. 2016).
The protein domains can be considered distinct functions and structural units of proteins that are usually identified as repeating (sequence or structural) units (Ingolfsson and Yona 2008; Li et al. 2012). In molecular evolution, these domains may have been reorganized in different arrangements in protein function annotation (Ingolfsson and Yona 2008), protein structure determination (Marchler-Bauer et al. 2012), and protein engineering (Guerois and Serrano 2001). Conserved domains are defined by a conserved domain database (CDD) as repeating units in molecular evolution, the extent of which can be determined by sequence and structural analysis (Marchler-Bauer et al. 2012).
Sweetpotato (
Sweetpotato Genomics Resource (http://sweetpotato.plantbiology.msu.edu/index.shtml) and NCBI databases (https://www.ncbi.nlm.nih.gov/) were used to identify the AGPase domain-containing proteins in the three species. The amino acid sequence of the AGPase protein
The ProtParam (http://www.expasy.org/tools/protparam.html) of ExPASy (Expert protein analysis system, https://www.expasy.org/) tool was used to compute the physicochemical characteristics of AGPase proteins in the three species, including the number of amino acids, molecular weight, theoretical isoelectric point (pI), instability (II) and aliphatic index (AI), and grand average of hydropathy (GRAVY) (Gasteiger et al. 2005).
The amino acid sequences of the AGPase proteins in FASTA formats were used for multiple-sequence alignment using the CLC Sequence Viewer 7.6 software (CLC bio, Aarhus, Denmark). A neighbor-joining phylogenetic tree was constructed using MEGA X 10.1 software (Pennsylvania State University, US) with the following parameters: bootstrap analysis of 1,000 replicates, Poisson correction method, and pairwise deletion (Kumar et al. 2018).
Pfam (http://pfam.janelia.org/), SMART (http://smart.embl-heidelberg.de/), and CDD (http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) were used to explore the conserved domains of the AGPase proteins. The selected conserved domains were drawn using DOG 2.0.1 software (Ren et al. 2009).
Forty-five AGPase domain-containing proteins from
Table 1 . Biochemical and physicochemical characteristics of AGPase proteins in the three species.
Species | Accession No. | Subunit | Amino acids | Molecular weight (MW) | Isoelectric point (pI) | Instability index (II) | Aliphatic index (AI) | Grand average of hydropathy (GRAVY) |
---|---|---|---|---|---|---|---|---|
BAF47744.2 | Small | 522 | 57155.24 | 6.74 | 39.79 | 91.24 | -0.178 | |
AFL55400.1 | Small | 522 | 57143.19 | 6.74 | 39.50 | 90.48 | -0.188 | |
AAS66988.1 | Small | 522 | 57188.32 | 6.74 | 39.42 | 91.23 | -0.166 | |
AAA19648.1 | Small | 303 | 33530.51 | 5.52 | 35.06 | 96.30 | -0.129 | |
CAA86726.1 | Small | 302 | 33374.32 | 5.39 | 35.14 | 96.62 | -0.115 | |
CAA58473.1 | Small | 427 | 47300.22 | 6.13 | 36.29 | 97.12 | -0.119 | |
AFL55401.1 | Small | 523 | 57164.19 | 8.02 | 37.38 | 90.15 | -0.194 | |
BAF47745.1 | Small | 523 | 57178.21 | 8.02 | 37.38 | 90.34 | -0.190 | |
AAS66987.1 | Small | 523 | 57179.24 | 8.02 | 36.64 | 90.52 | -0.183 | |
AFL55399.1 | Large | 525 | 58055.43 | 8.92 | 34.29 | 88.44 | -0.164 | |
AGB85112.1 | Large | 525 | 57990.31 | 8.82 | 33.14 | 87.80 | -0.158 | |
BAF47749.1 | Large | 525 | 58117.46 | 8.93 | 35.26 | 87.50 | -0.164 | |
AFL55398.1 | Large | 518 | 57269.40 | 6.37 | 29.97 | 85.08 | -0.178 | |
BAF47748.1 | Large | 518 | 57269.36 | 6.25 | 29.73 | 85.08 | -0.177 | |
AGB85111.1 | Large | 517 | 57376.52 | 6.41 | 28.99 | 84.29 | -0.190 | |
AFL55396.1 | Unknown | 517 | 57577.74 | 7.01 | 35.32 | 86.36 | -0.245 | |
BAF47746.1 | Large | 517 | 57616.78 | 6.69 | 36.61 | 87.31 | -0.234 | |
CAB52196.1 | Unknown | 450 | 50090.21 | 5.38 | 35.94 | 89.04 | -0.168 | |
BAF47747.1 | Large | 515 | 57562.13 | 7.08 | 31.74 | 88.99 | -0.204 | |
AFL55397.1 | Large | 515 | 57485.94 | 6.44 | 32.78 | 88.80 | -0.194 | |
AGB85109.1 | Large | 517 | 57527.64 | 6.44 | 37.97 | 87.50 | -0.237 | |
CAB55495.1 | Unknown | 490 | 54707.53 | 7.14 | 36.97 | 89.33 | -0.227 | |
AGB85110.1 | Large | 515 | 57559.03 | 6.31 | 31.13 | 89.55 | -0.212 | |
AAC21562.1 | Large | 517 | 57686.94 | 7.55 | 38.55 | 86.92 | -0.234 | |
CAB55496.1 | Large | 385 | 43443.49 | 5.35 | 32.30 | 85.82 | -0.224 | |
CAB51610.1 | Large | 306 | 34636.48 | 5.13 | 37.96 | 86.63 | -0.300 | |
itf11g03360.t1 | Unknown | 522 | 57155.24 | 6.74 | 39.79 | 91.23 | -0.178 | |
itf13g19620.t1 | Large | 525 | 58186.57 | 9.01 | 34.65 | 87.89 | -0.170 | |
itf02g13930.t1 | Unknown | 523 | 57178.21 | 8.02 | 37.40 | 90.15 | -0.194 | |
itf01g13780.t1 | Unknown | 351 | 39640.79 | 9.53 | 65.48 | 93.02 | -0.191 | |
itf00g32520.t1 | Unknown | 351 | 39204.50 | 5.40 | 46.38 | 99.46 | 0.111 | |
itf09g27040.t1 | Small | 474 | 52547.38 | 6.15 | 47.76 | 85.99 | -0.240 | |
itf06g21950.t1 | Large | 517 | 57244.40 | 6.37 | 28.90 | 84.87 | -0.174 | |
itf08g03850.t1 | Large | 517 | 57594.29 | 8.50 | 28.36 | 85.98 | -0.201 | |
itf05g24300.t1 | Unknown | 416 | 46019.99 | 5.76 | 33.92 | 99.81 | 0.057 | |
itf10g06320.t1 | Unknown | 427 | 48406.64 | 5.64 | 37.09 | 99.53 | 0.111 | |
itb02g09380.t1 | Unknown | 523 | 57164.19 | 8.02 | 37.38 | 90.15 | -0.194 | |
itb11g03360.t1 | Unknown | 522 | 57155.24 | 6.74 | 39.79 | 91.23 | -0.178 | |
itb13g23180.t1 | Large | 266 | 29618.76 | 5.68 | 32.92 | 92.74 | -0.106 | |
itb09g31010.t1 | Small | 475 | 52687.57 | 6.16 | 48.56 | 86.63 | -0.236 | |
itb06g20570.t1 | Large | 517 | 57203.30 | 6.51 | 29.78 | 83.73 | -0.185 | |
itb08g03970.t1 | Large | 517 | 57626.35 | 8.50 | 28.36 | 85.42 | -0.206 | |
itb09g17690.t1 | Unknown | 165 | 18349.10 | 4.71 | 32.45 | 92.24 | 0.049 | |
itb05g25020.t1 | Unknown | 416 | 46032.99 | 5.76 | 33.46 | 99.57 | 0.050 | |
itb11g22920.t4 | Unknown | 415 | 45485.48 | 6.23 | 41.54 | 100.48 | 0.045 |
The isoelectric point (pI), which represents the average pH of the molecule without a net electrical charge or electrically neutrality, was 4.71-9.53 in all categories. The average pI of
Six types of conserved domains that showed different distributions were included in the AGPase proteins of these three species (Fig. 1b, Table 2). Most of the
Table 2 . Conserved domain prediction of the AGPase in the three species.
Species | Accession No. | Amino acid | Conserved domain 1 | Conserved domain 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ID | Name | Start | End | ID | Name | Start | End | |||
BAF47744.2 | 522 | cd02508 | ADP_Glucose_PP | 103 | 352 | cd04651 | LbH_G1P_AT_C | 390 | 516 | |
AFL55400.1 | 522 | cd02508 | ADP_Glucose_PP | 103 | 352 | cd04651 | LbH_G1P_AT_C | 390 | 516 | |
AAS66988.1 | 522 | cd02508 | ADP_Glucose_PP | 103 | 352 | cd04651 | LbH_G1P_AT_C | 390 | 516 | |
AAA19648.1 | 303 | cd00761 | Glyco_tranf_GTA_type | 1 | 147 | cd04651 | LbH_G1P_AT_C | 171 | 297 | |
CAA86726.1 | 302 | cd00761 | Glyco_tranf_GTA_type | 1 | 146 | cd04651 | LbH_G1P_AT_C | 170 | 296 | |
CAA58473.1 | 427 | cd02508 | ADP_Glucose_PP | 1 | 257 | cd04651 | LbH_G1P_AT_C | 295 | 421 | |
AFL55401.1 | 523 | cd02508 | ADP_Glucose_PP | 104 | 353 | cd04651 | LbH_G1P_AT_C | 391 | 517 | |
BAF47745.1 | 523 | cd02508 | ADP_Glucose_PP | 104 | 353 | cd04651 | LbH_G1P_AT_C | 391 | 517 | |
AAS66987.1 | 523 | cd02508 | ADP_Glucose_PP | 104 | 353 | cd04651 | LbH_G1P_AT_C | 391 | 517 | |
AFL55399.1 | 525 | cd04181 | NTP_transferase | 93 | 307 | cd04651 | LbH_G1P_AT_C | 393 | 519 | |
AGB85112.1 | 525 | cd04181 | NTP_transferase | 93 | 307 | cd04651 | LbH_G1P_AT_C | 393 | 519 | |
BAF47749.1 | 525 | cd04181 | NTP_transferase | 93 | 307 | cd04651 | LbH_G1P_AT_C | 393 | 519 | |
AFL55398.1 | 518 | cd04181 | NTP_transferase | 88 | 363 | cd04651 | LbH_G1P_AT_C | 386 | 512 | |
BAF47748.1 | 518 | cd04181 | NTP_transferase | 88 | 363 | cd04651 | LbH_G1P_AT_C | 386 | 512 | |
AGB85111.1 | 517 | cd04181 | NTP_transferase | 87 | 362 | cd04651 | LbH_G1P_AT_C | 385 | 511 | |
AFL55396.1 | 517 | cd04181 | NTP_transferase | 87 | 362 | cd04651 | LbH_G1P_AT_C | 385 | 511 | |
BAF47746.1 | 517 | cd04181 | NTP_transferase | 87 | 362 | cd04651 | LbH_G1P_AT_C | 385 | 511 | |
CAB52196.1 | 450 | cd04181 | NTP_transferase | 20 | 295 | cd04651 | LbH_G1P_AT_C | 318 | 444 | |
BAF47747.1 | 515 | cd04181 | NTP_transferase | 85 | 360 | cd04651 | LbH_G1P_AT_C | 383 | 509 | |
AFL55397.1 | 515 | cd04181 | NTP_transferase | 85 | 360 | cd04651 | LbH_G1P_AT_C | 383 | 509 | |
AGB85109.1 | 517 | cd04181 | NTP_transferase | 87 | 362 | cd04651 | LbH_G1P_AT_C | 385 | 511 | |
CAB55495.1 | 490 | cd04181 | NTP_transferase | 60 | 335 | cd04651 | LbH_G1P_AT_C | 358 | 484 | |
AGB85110.1 | 515 | cd04181 | NTP_transferase | 85 | 360 | cd04651 | LbH_G1P_AT_C | 383 | 509 | |
AAC21562.1 | 517 | cd04181 | NTP_transferase | 87 | 362 | cd04651 | LbH_G1P_AT_C | 385 | 511 | |
CAB55496.1 | 385 | cd00761 | Glyco_tranf_GTA_type | 2 | 230 | cd04651 | LbH_G1P_AT_C | 253 | 379 | |
CAB51610.1 | 306 | cd00761 | Glyco_tranf_GTA_type | 1 | 151 | cd04651 | LbH_G1P_AT_C | 174 | 300 | |
itf11g03360.t1 | 522 | cd04181 | NTP_transferase | 94 | 367 | |||||
itf13g19620.t1 | 525 | cd04181 | NTP_transferase | 94 | 371 | |||||
itf02g13930.t1 | 523 | cd04181 | NTP_transferase | 95 | 368 | |||||
itf01g13780.t1 | 351 | cd04181 | NTP_transferase | 243 | 299 | |||||
itf00g32520.t1 | 351 | cd04181 | NTP_transferase | 127 | 182 | |||||
itf09g27040.t1 | 474 | cd04181 | NTP_transferase | 56 | 322 | |||||
itf06g21950.t1 | 517 | cd04181 | NTP_transferase | 86 | 363 | |||||
itf08g03850.t1 | 517 | cd04181 | NTP_transferase | 86 | 363 | |||||
itf05g24300.t1 | 416 | cd04181 | NTP_transferase | 11 | 205 | pfam00132 | Hexapep | 297 | 329 | |
itf10g06320.t1 | 427 | cd04181 | NTP_transferase | 109 | 161 | pfam00118 | Cpn60_TCP1 | 175 | 212 | |
itb02g09380.t1 | 523 | cd04181 | NTP_transferase | 95 | 368 | |||||
itb11g03360.t1 | 522 | cd04181 | NTP_transferase | 94 | 367 | |||||
itb13g23180.t1 | 266 | cd04181 | NTP_transferase | 1 | 112 | |||||
itb09g31010.t1 | 475 | cd04181 | NTP_transferase | 57 | 323 | |||||
itb06g20570.t1 | 517 | cd04181 | NTP_transferase | 86 | 363 | |||||
itb08g03970.t1 | 517 | cd04181 | NTP_transferase | 86 | 363 | |||||
itb09g17690.t1 | 165 | cd04181 | NTP_transferase | 2 | 30 | cd04181 | NTP_transferase | 38 | 85 | |
itb05g25020.t1 | 416 | cd04181 | NTP_transferase | 11 | 205 | pfam00132 | Hexapep | 297 | 329 | |
itb11g22920.t4 | 415 | cd04181 | NTP_transferase | 10 | 211 | pfam00132 | Hexapep | 300 | 328 |
The evolutionary history was inferred using the Neighbor-Joining method (Saitou and Nei 1987). Fig. 1a presents the optimal tree with the sum of the branch length = 29.09. This analysis involved 45 amino acid sequences and 512 positions. The conserved domains were labeled on the amino acid sequences (Fig. 1a). The length and type of the domain were different for each species. Based on the phylogenetic tree, AGPase proteins from these species were grouped together according to large and small subunit type.
AGPase is an important factor involved in the tuberous root of sweetpotatoes because it is a vital enzyme in starch synthesis (Tsubone et al. 2000; Yatomi et al. 1996). Although it is also present in
A difference in the domain composition of AGPase was observed between sweetpotatoes and the other
Sweetpotato AGPases have relatively conserved domains compared to
Table 1 . Biochemical and physicochemical characteristics of AGPase proteins in the three species.
Species | Accession No. | Subunit | Amino acids | Molecular weight (MW) | Isoelectric point (pI) | Instability index (II) | Aliphatic index (AI) | Grand average of hydropathy (GRAVY) |
---|---|---|---|---|---|---|---|---|
BAF47744.2 | Small | 522 | 57155.24 | 6.74 | 39.79 | 91.24 | -0.178 | |
AFL55400.1 | Small | 522 | 57143.19 | 6.74 | 39.50 | 90.48 | -0.188 | |
AAS66988.1 | Small | 522 | 57188.32 | 6.74 | 39.42 | 91.23 | -0.166 | |
AAA19648.1 | Small | 303 | 33530.51 | 5.52 | 35.06 | 96.30 | -0.129 | |
CAA86726.1 | Small | 302 | 33374.32 | 5.39 | 35.14 | 96.62 | -0.115 | |
CAA58473.1 | Small | 427 | 47300.22 | 6.13 | 36.29 | 97.12 | -0.119 | |
AFL55401.1 | Small | 523 | 57164.19 | 8.02 | 37.38 | 90.15 | -0.194 | |
BAF47745.1 | Small | 523 | 57178.21 | 8.02 | 37.38 | 90.34 | -0.190 | |
AAS66987.1 | Small | 523 | 57179.24 | 8.02 | 36.64 | 90.52 | -0.183 | |
AFL55399.1 | Large | 525 | 58055.43 | 8.92 | 34.29 | 88.44 | -0.164 | |
AGB85112.1 | Large | 525 | 57990.31 | 8.82 | 33.14 | 87.80 | -0.158 | |
BAF47749.1 | Large | 525 | 58117.46 | 8.93 | 35.26 | 87.50 | -0.164 | |
AFL55398.1 | Large | 518 | 57269.40 | 6.37 | 29.97 | 85.08 | -0.178 | |
BAF47748.1 | Large | 518 | 57269.36 | 6.25 | 29.73 | 85.08 | -0.177 | |
AGB85111.1 | Large | 517 | 57376.52 | 6.41 | 28.99 | 84.29 | -0.190 | |
AFL55396.1 | Unknown | 517 | 57577.74 | 7.01 | 35.32 | 86.36 | -0.245 | |
BAF47746.1 | Large | 517 | 57616.78 | 6.69 | 36.61 | 87.31 | -0.234 | |
CAB52196.1 | Unknown | 450 | 50090.21 | 5.38 | 35.94 | 89.04 | -0.168 | |
BAF47747.1 | Large | 515 | 57562.13 | 7.08 | 31.74 | 88.99 | -0.204 | |
AFL55397.1 | Large | 515 | 57485.94 | 6.44 | 32.78 | 88.80 | -0.194 | |
AGB85109.1 | Large | 517 | 57527.64 | 6.44 | 37.97 | 87.50 | -0.237 | |
CAB55495.1 | Unknown | 490 | 54707.53 | 7.14 | 36.97 | 89.33 | -0.227 | |
AGB85110.1 | Large | 515 | 57559.03 | 6.31 | 31.13 | 89.55 | -0.212 | |
AAC21562.1 | Large | 517 | 57686.94 | 7.55 | 38.55 | 86.92 | -0.234 | |
CAB55496.1 | Large | 385 | 43443.49 | 5.35 | 32.30 | 85.82 | -0.224 | |
CAB51610.1 | Large | 306 | 34636.48 | 5.13 | 37.96 | 86.63 | -0.300 | |
itf11g03360.t1 | Unknown | 522 | 57155.24 | 6.74 | 39.79 | 91.23 | -0.178 | |
itf13g19620.t1 | Large | 525 | 58186.57 | 9.01 | 34.65 | 87.89 | -0.170 | |
itf02g13930.t1 | Unknown | 523 | 57178.21 | 8.02 | 37.40 | 90.15 | -0.194 | |
itf01g13780.t1 | Unknown | 351 | 39640.79 | 9.53 | 65.48 | 93.02 | -0.191 | |
itf00g32520.t1 | Unknown | 351 | 39204.50 | 5.40 | 46.38 | 99.46 | 0.111 | |
itf09g27040.t1 | Small | 474 | 52547.38 | 6.15 | 47.76 | 85.99 | -0.240 | |
itf06g21950.t1 | Large | 517 | 57244.40 | 6.37 | 28.90 | 84.87 | -0.174 | |
itf08g03850.t1 | Large | 517 | 57594.29 | 8.50 | 28.36 | 85.98 | -0.201 | |
itf05g24300.t1 | Unknown | 416 | 46019.99 | 5.76 | 33.92 | 99.81 | 0.057 | |
itf10g06320.t1 | Unknown | 427 | 48406.64 | 5.64 | 37.09 | 99.53 | 0.111 | |
itb02g09380.t1 | Unknown | 523 | 57164.19 | 8.02 | 37.38 | 90.15 | -0.194 | |
itb11g03360.t1 | Unknown | 522 | 57155.24 | 6.74 | 39.79 | 91.23 | -0.178 | |
itb13g23180.t1 | Large | 266 | 29618.76 | 5.68 | 32.92 | 92.74 | -0.106 | |
itb09g31010.t1 | Small | 475 | 52687.57 | 6.16 | 48.56 | 86.63 | -0.236 | |
itb06g20570.t1 | Large | 517 | 57203.30 | 6.51 | 29.78 | 83.73 | -0.185 | |
itb08g03970.t1 | Large | 517 | 57626.35 | 8.50 | 28.36 | 85.42 | -0.206 | |
itb09g17690.t1 | Unknown | 165 | 18349.10 | 4.71 | 32.45 | 92.24 | 0.049 | |
itb05g25020.t1 | Unknown | 416 | 46032.99 | 5.76 | 33.46 | 99.57 | 0.050 | |
itb11g22920.t4 | Unknown | 415 | 45485.48 | 6.23 | 41.54 | 100.48 | 0.045 |
Table 2 . Conserved domain prediction of the AGPase in the three species.
Species | Accession No. | Amino acid | Conserved domain 1 | Conserved domain 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ID | Name | Start | End | ID | Name | Start | End | |||
BAF47744.2 | 522 | cd02508 | ADP_Glucose_PP | 103 | 352 | cd04651 | LbH_G1P_AT_C | 390 | 516 | |
AFL55400.1 | 522 | cd02508 | ADP_Glucose_PP | 103 | 352 | cd04651 | LbH_G1P_AT_C | 390 | 516 | |
AAS66988.1 | 522 | cd02508 | ADP_Glucose_PP | 103 | 352 | cd04651 | LbH_G1P_AT_C | 390 | 516 | |
AAA19648.1 | 303 | cd00761 | Glyco_tranf_GTA_type | 1 | 147 | cd04651 | LbH_G1P_AT_C | 171 | 297 | |
CAA86726.1 | 302 | cd00761 | Glyco_tranf_GTA_type | 1 | 146 | cd04651 | LbH_G1P_AT_C | 170 | 296 | |
CAA58473.1 | 427 | cd02508 | ADP_Glucose_PP | 1 | 257 | cd04651 | LbH_G1P_AT_C | 295 | 421 | |
AFL55401.1 | 523 | cd02508 | ADP_Glucose_PP | 104 | 353 | cd04651 | LbH_G1P_AT_C | 391 | 517 | |
BAF47745.1 | 523 | cd02508 | ADP_Glucose_PP | 104 | 353 | cd04651 | LbH_G1P_AT_C | 391 | 517 | |
AAS66987.1 | 523 | cd02508 | ADP_Glucose_PP | 104 | 353 | cd04651 | LbH_G1P_AT_C | 391 | 517 | |
AFL55399.1 | 525 | cd04181 | NTP_transferase | 93 | 307 | cd04651 | LbH_G1P_AT_C | 393 | 519 | |
AGB85112.1 | 525 | cd04181 | NTP_transferase | 93 | 307 | cd04651 | LbH_G1P_AT_C | 393 | 519 | |
BAF47749.1 | 525 | cd04181 | NTP_transferase | 93 | 307 | cd04651 | LbH_G1P_AT_C | 393 | 519 | |
AFL55398.1 | 518 | cd04181 | NTP_transferase | 88 | 363 | cd04651 | LbH_G1P_AT_C | 386 | 512 | |
BAF47748.1 | 518 | cd04181 | NTP_transferase | 88 | 363 | cd04651 | LbH_G1P_AT_C | 386 | 512 | |
AGB85111.1 | 517 | cd04181 | NTP_transferase | 87 | 362 | cd04651 | LbH_G1P_AT_C | 385 | 511 | |
AFL55396.1 | 517 | cd04181 | NTP_transferase | 87 | 362 | cd04651 | LbH_G1P_AT_C | 385 | 511 | |
BAF47746.1 | 517 | cd04181 | NTP_transferase | 87 | 362 | cd04651 | LbH_G1P_AT_C | 385 | 511 | |
CAB52196.1 | 450 | cd04181 | NTP_transferase | 20 | 295 | cd04651 | LbH_G1P_AT_C | 318 | 444 | |
BAF47747.1 | 515 | cd04181 | NTP_transferase | 85 | 360 | cd04651 | LbH_G1P_AT_C | 383 | 509 | |
AFL55397.1 | 515 | cd04181 | NTP_transferase | 85 | 360 | cd04651 | LbH_G1P_AT_C | 383 | 509 | |
AGB85109.1 | 517 | cd04181 | NTP_transferase | 87 | 362 | cd04651 | LbH_G1P_AT_C | 385 | 511 | |
CAB55495.1 | 490 | cd04181 | NTP_transferase | 60 | 335 | cd04651 | LbH_G1P_AT_C | 358 | 484 | |
AGB85110.1 | 515 | cd04181 | NTP_transferase | 85 | 360 | cd04651 | LbH_G1P_AT_C | 383 | 509 | |
AAC21562.1 | 517 | cd04181 | NTP_transferase | 87 | 362 | cd04651 | LbH_G1P_AT_C | 385 | 511 | |
CAB55496.1 | 385 | cd00761 | Glyco_tranf_GTA_type | 2 | 230 | cd04651 | LbH_G1P_AT_C | 253 | 379 | |
CAB51610.1 | 306 | cd00761 | Glyco_tranf_GTA_type | 1 | 151 | cd04651 | LbH_G1P_AT_C | 174 | 300 | |
itf11g03360.t1 | 522 | cd04181 | NTP_transferase | 94 | 367 | |||||
itf13g19620.t1 | 525 | cd04181 | NTP_transferase | 94 | 371 | |||||
itf02g13930.t1 | 523 | cd04181 | NTP_transferase | 95 | 368 | |||||
itf01g13780.t1 | 351 | cd04181 | NTP_transferase | 243 | 299 | |||||
itf00g32520.t1 | 351 | cd04181 | NTP_transferase | 127 | 182 | |||||
itf09g27040.t1 | 474 | cd04181 | NTP_transferase | 56 | 322 | |||||
itf06g21950.t1 | 517 | cd04181 | NTP_transferase | 86 | 363 | |||||
itf08g03850.t1 | 517 | cd04181 | NTP_transferase | 86 | 363 | |||||
itf05g24300.t1 | 416 | cd04181 | NTP_transferase | 11 | 205 | pfam00132 | Hexapep | 297 | 329 | |
itf10g06320.t1 | 427 | cd04181 | NTP_transferase | 109 | 161 | pfam00118 | Cpn60_TCP1 | 175 | 212 | |
itb02g09380.t1 | 523 | cd04181 | NTP_transferase | 95 | 368 | |||||
itb11g03360.t1 | 522 | cd04181 | NTP_transferase | 94 | 367 | |||||
itb13g23180.t1 | 266 | cd04181 | NTP_transferase | 1 | 112 | |||||
itb09g31010.t1 | 475 | cd04181 | NTP_transferase | 57 | 323 | |||||
itb06g20570.t1 | 517 | cd04181 | NTP_transferase | 86 | 363 | |||||
itb08g03970.t1 | 517 | cd04181 | NTP_transferase | 86 | 363 | |||||
itb09g17690.t1 | 165 | cd04181 | NTP_transferase | 2 | 30 | cd04181 | NTP_transferase | 38 | 85 | |
itb05g25020.t1 | 416 | cd04181 | NTP_transferase | 11 | 205 | pfam00132 | Hexapep | 297 | 329 | |
itb11g22920.t4 | 415 | cd04181 | NTP_transferase | 10 | 211 | pfam00132 | Hexapep | 300 | 328 |
Jung-Wook Yang ・Yun-Hee Kim
J Plant Biotechnol 2023; 50(1): 163-168Ju Hwan Kim ・Ki Jung Nam ・Kang-Lok Lee ・Yun-Hee Kim
J Plant Biotechnol 2023; 50(1): 76-81
Journal of
Plant Biotechnology